Potential student research projects

The Research School of Physics performs research at the cutting edge of a wide range of disciplines.

By undertaking your own research project at ANU you could open up an exciting career in science.

Filter projects

Quantum Science and Applications

Exploring the limits of sensing with ultra-cold atoms

This project utilises a state-of-the-art multifield quantum sensor to develop new techniques and technologies for future high precision measurement devices.

Dr Nicholas Robins, Dr Christian Freier, Dr Kyle Hardman

Exciton polaritons in 2D atomically thin materials

This experimental project will focus on nvestigation of strong light-matter coupling and exciton polaritons in novel atomically thin materials.

A/Prof Elena Ostrovskaya, Professor Andrew Truscott

Diamond quantum computing and communications

This project aims to engineer diamond quantum computers and communication networks.

Dr Marcus Doherty, Dr Andrew Horsley

Integrated quantum photonics

The goal of the project is to understand new physical phenomena arising from quantum and nonlinear optical integration. In the future this research may open doors to new types of computers and simulators with information capacity exceeding the number of elementary particles in the entire universe.

A/Prof Andrey A. Sukhorukov, Prof Dragomir Neshev, Mr Kai Wang

Quantum squeezed states for interferometric gravitational-wave detectors

Using non-classical light states on laser interferometric gravitational-wave detectors, to further enhance the best length measurement devices in the world.

Professor David McClelland, Professor Daniel Shaddock, Dr Bram Slagmolen

Dual torsion pendulum for quantum noise limited sensing

Construct a small dual tosion pendulum which have their centre of mass co-incide and their rotational axis colinear. Inital diagnostics will be done using shadow sensors.

Dr Bram Slagmolen, Professor David McClelland, Dr Robert Ward

Experimental quantum simulation with ultracold metastable Helium atoms in an optical lattice

This project will construct a 3D optical lattice apparatus for ultracold metastable Helium atoms, which will form an experimental quantum-simulator to investigate quantum many-body physics. A range of experiments will be performed such as studying higher order quantum correlations across the superfluid to Mott insulator phase transition.

Dr Sean Hodgman, Professor Andrew Truscott

Causality vs free will in quantum correlations

The strong correlations between entangled quantum systems can be explained only by giving up one of determinism, relativistic locality, or experimental free will. In the latter case, the choice of experimental settings is statistically dependent on hidden system variables. This project examines information properties of such a dependence.

Dr Michael Hall

Space Based Quantum Communications

Develop a satellite quantum communications network in collaboration with RSAA and DST Group. This project will cover advanced satellite free space optical communications using adaptive optics.

Dr Oliver Thearle, Professor Ping Koy Lam

Quantum tunnelling in many-body systems

Quantum tunnelling is a fundamental process in physics. How this process occurs with composite (many-body) systems, and in particular how it relates to decoherence and dissipation, are still open questions.

Dr Cédric Simenel, Dr Edward Simpson

Synthetic multi-dimensional photonics

This project goal is to investigate, theoretically and experimentally, photonic systems with synthetic dimensionality exceeding the three spatial dimensions, and reveal new opportunities for applications in optical signal switching and sensing in classical and quantum photonics.

A/Prof Andrey A. Sukhorukov, Mr Kai Wang

Non-equilibrium quantum condensation of microcavity exciton polaritons

This project combines theoretical and experimental research on exciton polaritons in semiconductor microcavities. We investigate emergent quantum phenomena far from equilibrium and their applications for next-generation optoelectronics devices.

A/Prof Elena Ostrovskaya, Professor Andrew Truscott

Low-energy tests of the signatures of quantum gravity

This project will investigate the potential of various experimental platforms to search for effects of quantum gravity.

Dr Simon Haine

Instability dynamics in superfluid mixtures

This project will theoretically model instability dynamics generated at the interface between two superfluids. This is an opportunity for a student to be involved in a theory project that will drive current experiments in the atom laser and sensors group. 

Dr Angela White, Dr Nicholas Robins

Creating quantum entanglement for improving measurements of gravity

This theoretical project will investigate and theoretically model how to create quantum entanglement within a Bose-Einstein condensate, with the motivation of improving the sensitvity of atom-interferometers used to measure gravitational fields. 

Dr Simon Haine, Professor Joseph Hope

Quantum tunnelling and energy dissipation in nuclear collisions

This research project, with both experimental and theoretical angles, is developing a new perspective on the transition from a quantum superposition to effectively irreversible outcomes in quantum collisions.

Professor Mahananda Dasgupta, Dr Edward Simpson, Professor David Hinde

Atomic magnetometer for exploring physics beyond the standard model

The Global Network of Optical Magnetometers for Exotic Physics (GNOME) uses precision atomic magnetometers to look new physics.  The concept is to have a global network of magnetometers looking for correlated magnetic field fluctuations that may be caused by strange, and unknown physics.

Dr Ben Buchler, Dr Geoff Campbell

Laser levitation of a macroscopic mirror

This project aims to be the first in the world to use the radiation pressure forces of laser beams to coherently levitate a macroscopic mirror. Applications of this scheme include precision metrology and test of new physics theories.

Professor Ping Koy Lam, Dr Ben Buchler

Optimised atom interferometry for space-based experiments

This theoretical physics project aims to optimise the performance of atom interferometry in a space-based environment. Space-based operation requires novel beamsplitting and atomic source production techniques, which will be developed in this project.

Dr Stuart Szigeti, Professor John Close

Fundamental tests of quantum mechanics with matter waves

We create the coldest stuff in the Universe – a Bose-Einstein condensate (BEC) – by laser-cooling helium atoms to within a millionth of a degree Kelvin. At these extremely low temperatures particles behave more like waves.  You will use the BEC to study fundamental quantum mechanics and for applications like atom interferometry.

Professor Andrew Truscott, Professor Kenneth Baldwin

Vibration control for optical interferometry

Develop an active vibraiton isolation platform to provide a quiet, small displacement environment for high precision inteferometry.

Dr Bram Slagmolen, Professor David McClelland, Dr Robert Ward

Few-vortex dynamics in superfluid mixtures

This project will investigate how the dynamics of few quantum-vortices are altered in the presence of a moving second superfluid component. 

Dr Angela White

Chaotic vortex dynamics in superfluids

This project aims to shed light on a fundamental physics question, what is the role of chaotic events in turbulent flows?

Dr Angela White

Quantum super resolution

When two point sources of light are close together, we just see one blurry patch. This project aims to use coherent measurement techniques in quantum optics to measure the separation between the point sources beyond the Rayleigh's limit.

Dr Syed Assad, Professor Ping Koy Lam

Discovering quantum defects in diamond and related materials

This project aims to discover and study defects in diamond and related materials that are suitable for quantum technology.

Dr Marcus Doherty, Professor Neil Manson

How does a quantum system reach equilibrium?

The idea of equilibration is ubiquitous throughout nature. Out-of-equilibrium dynamics – be it caused by a disturbance and subsequent “rethermalisation”, or by passing through a phase transition – is a difficult question to characterise. This project looks at both equilibration and phase transitions in a Bose-Einstein condensate of metastable helium atoms.

Professor Andrew Truscott, Professor Kenneth Baldwin

Computing nuclei: numerical solution of the Schrödinger equation

Analytic solutions of real-world quantum mechanics problems are rare, and in practise we must use numerical methods to obtain solutions. This project will give you practical experience in solving the static and time-dependent Schrödinger equations using a computer.

Dr Edward Simpson, Dr Cédric Simenel

Hot entanglement with cold atoms

This theoretical physics project aims to develop novel schemes for generating long-lived, thermally-robust entanglement between individual pairs of cold atoms. Theoretical models developed in this project will inform optical tweezer experiments in the lab of Mikkel Andersen at the University of Otago.

Dr Stuart Szigeti

Multi-component quantum gases : instabilities, turbulence and dynamics

This project aims to explore and measure new or predicted phenomena in complex multicomponent quantum systems.

Dr Nicholas Robins, Dr Angela White

Some other physics related research projects may be found at the ANU College of Engineering & Computer Science and the Research School of Astronomy & Astrophysics

Updated:  4 September 2019/ Responsible Officer:  Director, RSPhys/ Page Contact:  Physics Webmaster