Atomically thin transition metal dichalcogenides (TMDs) represent a perfect 2D "flatland" platform for creating excitons with large binding energies and coupling them to light in optical microcavities. This project aims to design, fabricate, and spectroscopically interrogate TMD-based microcavities and progress towards Bose-Einstein condensation of exciton polaritons in these structures. The excitement in the field comes from the possibility to observe dissipationless (superfluid) exciton-polariton transport at room temperature using the new 2D material platform.
This project is supported by the ARC Centre of Excellence for Future Low-Energy Electronics Technology (FLEET). A scholarship top-up, as well as training, collaboration, and networking opportunities will be offered to FLEET students.
Fundamentals of solid state physics, condensed matter physics, quantum physics, and optics are desirable, but not essential.