Conventional 3D X-ray microscopes distinguish different structures, by capturing differences in how these structures absorb X-rays. Recently, researchers have shown that modelling the more "wave-like" properties of X-rays can enhance the resolving power of 3D X-ray microscopes. In this new "phase contrast" X-ray microscopy, modelling the diffraction of the X-rays between the sample and detector, allows us to capture information about structures in the sample that are entirely invisible to conventional methods. However, X-ray phase-contrast microscopy methods typically do not model complex X-ray behaviour within the sample itself.
The ANU CTLab is a 3D X-ray microscopy facility, servicing industry and academic scientists in a variety of fields. The X-ray microscopes used at the CTLab utilise a unique "high cone-angle" scanning geometry, that allows us to inspect in greater detail the wave-like behaviour of X-rays within samples. This project will involve building a unified model of several theoretically-complex X-ray behaviours within the sample, drawing from statistical and wave optics: spatial partial-coherence, refraction, and spectral interactions. The student will then apply this model to improve imaging capabilities at the ANU CTLab.