Potential student research projects

The Research School of Physics performs research at the cutting edge of a wide range of disciplines.

By undertaking your own research project at ANU you could open up an exciting career in science.

Filter projects

Some other physics related research projects may be found at the ANU College of Engineering & Computer Science, the Mathematical Sciences Institute and the Research School of Astronomy & Astrophysics

Astrophysics

Nanostructured Metasurfaces for Optical Telescopes

Traditional optical systems use multiple optical elements to achieve imaging or detection goals. Ground-based and space-based telescopes are limited by manufacturing and engineering constraints. The ultra-thin nature of metasurfaces makes them a superior design choice for optical systems that are constrained by the size, weight and complexity of conventional optics. 

Dr Josephine Munro, Prof Andrey Sukhorukov

Prospects of future ground-based gravitational-wave detector network

In this project, we study the gravitational-wave astronomy and astrophysics science cases and observational prospects with future ground-based gravitational-wave observatories.

Dr Lilli (Ling) Sun, A/Prof Bram Slagmolen, Distinguished Prof David McClelland

Positron Annihilation Spectroscopy

Understanding material defects at the atomic scale using anitmatter.

Dr Joshua Machacek, Professor Stephen Buckman

Atomic and Molecular Physics

Positron interactions with structured surfaces

We are investigating novel effects and applications using positrons and structured surfaces.

Dr Joshua Machacek, Dr Sergey Kruk

Mass-entangled ultracold helium atoms

This experimental project aims to create entangled states of ultracold helium atoms where the entanglement is between atoms of different mass. By manipulating the entangled pairs using laser induced Bragg transitions and measuring the resulting correlations, we will study how gravity affects mass-entangled particles.

Dr Sean Hodgman, Professor Andrew Truscott

Optical quantum memory

An optical quantum memory will capture a pulse of light, store it and then controllably release it. This has to be done without ever knowing what you have stored, because a measurement will collapse the quantum state. We are exploring a "photon echo" process to achieve this goal.

Professor Ben Buchler

Interactions between antimatter and ultracold atoms

Antiparticles and antimatter have progressed from theory and science fiction to become an important and exciting area of pure and applied science. This fundamental atomic physics project will investigate how antimatter and matter interact by experimentally studying the interaction of positrons (the electron anti-particle) with trapped ultracold rubidium atoms.

Dr Sean Hodgman, Professor Stephen Buckman, Dr Joshua Machacek

Positron Annihilation Spectroscopy

Understanding material defects at the atomic scale using anitmatter.

Dr Joshua Machacek, Professor Stephen Buckman

Biophysics

Specific ion effects

We are seeking students to perform fundamental research into how different ions exert influence in a myriad of systems.

Professor Vincent Craig

Solid-state nanopore sensors: Unveiling New Frontiers in Biomolecule Detection

Investigate novel nanopore bio-sensors using nanofabrication, bio-chemsity and machine learning.

Prof Patrick Kluth

Understanding drought-resistance in Australian plants with 3D X-ray microscopy

This project will use unique, ANU-designed 3D X-ray microscopes and state-of-the art image analysis to track physiological responses of drought-tolerant Australian plants when subjected to water stress. The results will help us understand the mechanisms that underpin drought-tolerance, helping resolve ongoing debates and helping understand which forest eco-systems that are most vulnerable to climate change, and why.

Prof Adrian Sheppard, Dr Levi Beeching, Dr Andrew Kingston

Positron Annihilation Spectroscopy

Understanding material defects at the atomic scale using anitmatter.

Dr Joshua Machacek, Professor Stephen Buckman

Clean Energy

Creating new materials using pressure and diamond anvil cells

New forms of materials can be made using extreme pressures via diamond anvil cells.

Prof Jodie Bradby, Ms Xingshuo Huang

Creation of novel hybrid boron nitride materials

This project focussed on the creation of novel hybrid boron nitride materials by utilizing advanced green techniques of mechanochemistry and high-pressure methods. 

Prof Jodie Bradby

Flexible, Cost-effective III-V Semiconductor-Perovskite Tandem Solar Cells

This project aims to develop high efficiency, cost-effective III-V semiconductor-perovskite tandem solar cells which are flexible and lightweight, while achieving excellent device stability.

Professor Hoe Tan, Dr Tuomas Haggren, Professor Chennupati Jagadish

Engineering in Physics

Understanding energy dissipation in colliding quantum many-body systems

This project aims to gain fundamental insights into the mechanisms of energy dissipation in nuclear collisions by making new measurements that will aid in the development of new models of nuclear fusion.

Dr Kaitlin Cook, Professor Mahananda Dasgupta, Emeritus Professor David Hinde

Nanostructured Metasurfaces for Optical Telescopes

Traditional optical systems use multiple optical elements to achieve imaging or detection goals. Ground-based and space-based telescopes are limited by manufacturing and engineering constraints. The ultra-thin nature of metasurfaces makes them a superior design choice for optical systems that are constrained by the size, weight and complexity of conventional optics. 

Dr Josephine Munro, Prof Andrey Sukhorukov

Creating new materials using pressure and diamond anvil cells

New forms of materials can be made using extreme pressures via diamond anvil cells.

Prof Jodie Bradby, Ms Xingshuo Huang

Creation of novel hybrid boron nitride materials

This project focussed on the creation of novel hybrid boron nitride materials by utilizing advanced green techniques of mechanochemistry and high-pressure methods. 

Prof Jodie Bradby

Miniature absolute gravimeter for long-term gravity surveys

Absolute gravimeters tie their measurement of gravity to the definition of the second 
by interrogating the position of a falling test mass using a laser interferometer. Our vision is to develop and prototype a miniaturised absolute gravimeter by 
leveraging modern vacuum, laser, and micro-electromechanical systems.

Dr Samuel Legge, Professor John Close, Prof Patrick Kluth, Dr Giovanni Guccione

Ultra-fast lifetime measurements of nuclear excited states

Use ultra-fast gamma-ray detectors to perform excited-state lifetime measurements and investigate single-particle and collective features of atomic nuclei. 

Professor Gregory Lane, Dr AJ Mitchell, Professor Andrew Stuchbery, Emeritus Professor Tibor Kibedi

Vibration control for optical interferometry

Develop an active vibraiton isolation platform to provide a quiet, small displacement environment for high precision inteferometry.

A/Prof Bram Slagmolen, Distinguished Prof David McClelland

Engineering Inter-spacecraft laser links

Inter-satellite laser links are an emerging technology with applications in Earth Observation, telecommunications, security, and, the focus of the CGA space technology group.

Professor Kirk McKenzie, Dr Andrew Wade, Dr Ya Zhang

Developing ultra-high resolution optical meta-surface sensors

The project aims to develop methods to improve the sensitivity of optical metasurfaces for the detection of chemical and biological markers. By tailoring a high-precision optical interferometric sensing solution to the optical properties of a metasurface under-test, the project will improve the sensitivity of these devices, developing a new range of targeted ultra-precise metasurface sensors.

Dr Chathura Bandutunga , Prof Dragomir Neshev

Positron Annihilation Spectroscopy

Understanding material defects at the atomic scale using anitmatter.

Dr Joshua Machacek, Professor Stephen Buckman

High pressure creation of new forms of diamond

The hexagonal form of sp3 bonded carbon is predicted to be harder than 'normal' cubic diamond. We can make tiny amounts of this new form of diamond and want to know if it really is harder than diamond.

Prof Jodie Bradby, Ms Xingshuo Huang

Environmental Physics

Surface forces and the behaviour of colloidal systems

We measure the basic forces that operate between molecules that are manifest at interfaces. These forces control the stability of colloidal systems from blood to toothpaste. We use very sensitive techniques that are able to measure tiny forces with sub nanometer distance resolution. Understanding these forces enables us to predict how a huge variety of colloidal systems will behave.

Professor Vincent Craig

High pressure non-equilibrium plasma discharges in chemically reactive systems

The goal of this research is to study high pressure non-equilibrium plasma discharges in chemically reactive systems with applications to space, waste treatment and material science.

A/Prof Cormac Corr

Nanobubbles

Nanobubbles are simply nanosized bubbles. What makes them interesting? Theory tells us they should dissolve in less than a second but they are in some cases stable for days.

Professor Vincent Craig

Fusion and Plasma Confinement

The effect of He irradiation on the microstructure and mechanical properties of W/ W alloys

Nuclear fusion is a promising technology for solving the world’s energy crisis while drastically reducing pollution and avoiding the creation of nuclear waste, a major issue for nuclear fission. However, there are many scientific and technical challenges to be overcome before this technology can be used for large-scale energy generation. One of the problems that need to be solved is the tolerance of the diverter walls to the high temperatures and He implantation – conditions that are prevalent inside the fusion reactors.

A/Prof Cormac Corr, Dr Matt Thompson

Diagnosing plasma-surface interactions under fusion-relevant conditions

This project involves studying the complex plasma-surface interaction region of a fusion-relevant plasma environment through laser-based and spectroscopic techniques.

A/Prof Cormac Corr, Dr Matt Thompson

Nano-bubble formation in fusion relevant materials

Fusion energy promises millions of years of clean energy, but puts extreme stress on materials. This research will resolve scientific issues surrounding plasma-material interactions to guide and facilitate development of future advanced materials for fusion reactors.

A/Prof Cormac Corr, Prof Patrick Kluth, Dr Matt Thompson

Materials Science and Engineering

Making diamond from disordered forms of carbon

We have shown that glassy carbon is a fascinating material which has different properties depending on thow it was formed. The effect on how order and impurities influences the new phases formed under pressure is not understood.

Prof Jodie Bradby, Ms Xingshuo Huang

Positron interactions with structured surfaces

We are investigating novel effects and applications using positrons and structured surfaces.

Dr Joshua Machacek, Dr Sergey Kruk

Creating new materials using pressure and diamond anvil cells

New forms of materials can be made using extreme pressures via diamond anvil cells.

Prof Jodie Bradby, Ms Xingshuo Huang

Nanofluidic diodes: from biosensors to water treatment

Controlling the flow of ions and molecules through nano-sized pores is fundamental in many biological processes and the basis for applications such as DNA detection, water desalination and drug delivery. The project aims to develop solid-state nanofluidic diodes and exploit their properties for applications in bio-sensors and ion-selective channels.

Prof Patrick Kluth

Creation of novel hybrid boron nitride materials

This project focussed on the creation of novel hybrid boron nitride materials by utilizing advanced green techniques of mechanochemistry and high-pressure methods. 

Prof Jodie Bradby

Wearable III-V nanofilm photodetectors and sensors

Semiconductor nanofilms are just some tens of nanometres thick single-crystalline structures with lateral dimensions in cm-scale. The ultra-low thickness gives these films interesting properties differing from bulk materials, and enables interesting novel device concepts in photodetection and gas sensing.

Dr Tuomas Haggren, Professor Hoe Tan, Professor Chennupati Jagadish

Flexible, Cost-effective III-V Semiconductor-Perovskite Tandem Solar Cells

This project aims to develop high efficiency, cost-effective III-V semiconductor-perovskite tandem solar cells which are flexible and lightweight, while achieving excellent device stability.

Professor Hoe Tan, Dr Tuomas Haggren, Professor Chennupati Jagadish

The effect of He irradiation on the microstructure and mechanical properties of W/ W alloys

Nuclear fusion is a promising technology for solving the world’s energy crisis while drastically reducing pollution and avoiding the creation of nuclear waste, a major issue for nuclear fission. However, there are many scientific and technical challenges to be overcome before this technology can be used for large-scale energy generation. One of the problems that need to be solved is the tolerance of the diverter walls to the high temperatures and He implantation – conditions that are prevalent inside the fusion reactors.

A/Prof Cormac Corr, Dr Matt Thompson

Diagnosing plasma-surface interactions under fusion-relevant conditions

This project involves studying the complex plasma-surface interaction region of a fusion-relevant plasma environment through laser-based and spectroscopic techniques.

A/Prof Cormac Corr, Dr Matt Thompson

Functional nanopore membranes

Nano-pore membranes have important applications in chemical- and bio-sensing, water filtration and protein separation. This project will investigate our innovative technology to fabricate nanopore membranes in silicon dioxide and silicon nitride and exploit their use for advanced applications.

Prof Patrick Kluth

Positron Annihilation Spectroscopy

Understanding material defects at the atomic scale using anitmatter.

Dr Joshua Machacek, Professor Stephen Buckman

Flexible GaN-based UV photodetectors

Flexible GaN for applications in wearable and flexible electronics.

Dr Sonachand Adhikari, Professor Hoe Tan, Professor Chennupati Jagadish

Efficient optical interconnect for quantum computers

Superconducting and spin qubits are leading quantum computing technologies, but we currently have no way to connect them to optical quantum networks that will make up a future quantum internet. This project will develop an interconnect capable of efficiently converting microwave quantum information from these qubits to optical frequencies.

Dr Rose Ahlefeldt

Colloidal systems in highly concentrated salt solutions

We are studying colloidal systems in highly concentrated salt solutions. Here a number of surprising and unexplained things happen that are associated with surprisingly long-ranged electrostatic forces

Professor Vincent Craig

Solving the problem of how to measure a material harder than diamond

In experiments, measuring the hardness of a very hard material is fundamentally challenging. We aim to study the physical mechanics behind nanoindentation measurements to help better measure superhard materials.

Ms Xingshuo Huang, Prof Jodie Bradby

GeSn defect properties measured by nanoindentation

To understand defects in metal-semiconductor alloys, specifically GeSn in this project, to help making better alloy films and devices.

Ms Xingshuo Huang, Prof Jodie Bradby, Emeritus Professor Jim Williams

Nanowire photodetectors for photonic and quantum systems

Semiconductor nanowires are emerging nano-materials with substantial opportunities for novel photonic and quantum device applications. This project aims at developing a new generation of high performance NW based photodetectors for a wide range of applications.

Professor Lan Fu, Dr Ziyuan Li, Professor Hoe Tan

High pressure creation of new forms of diamond

The hexagonal form of sp3 bonded carbon is predicted to be harder than 'normal' cubic diamond. We can make tiny amounts of this new form of diamond and want to know if it really is harder than diamond.

Prof Jodie Bradby, Ms Xingshuo Huang

Nano-bubble formation in fusion relevant materials

Fusion energy promises millions of years of clean energy, but puts extreme stress on materials. This research will resolve scientific issues surrounding plasma-material interactions to guide and facilitate development of future advanced materials for fusion reactors.

A/Prof Cormac Corr, Prof Patrick Kluth, Dr Matt Thompson

Nanoscience and Nanotechnology

Positron interactions with structured surfaces

We are investigating novel effects and applications using positrons and structured surfaces.

Dr Joshua Machacek, Dr Sergey Kruk

Creating new materials using pressure and diamond anvil cells

New forms of materials can be made using extreme pressures via diamond anvil cells.

Prof Jodie Bradby, Ms Xingshuo Huang

Nanofluidic diodes: from biosensors to water treatment

Controlling the flow of ions and molecules through nano-sized pores is fundamental in many biological processes and the basis for applications such as DNA detection, water desalination and drug delivery. The project aims to develop solid-state nanofluidic diodes and exploit their properties for applications in bio-sensors and ion-selective channels.

Prof Patrick Kluth

Wearable III-V nanofilm photodetectors and sensors

Semiconductor nanofilms are just some tens of nanometres thick single-crystalline structures with lateral dimensions in cm-scale. The ultra-low thickness gives these films interesting properties differing from bulk materials, and enables interesting novel device concepts in photodetection and gas sensing.

Dr Tuomas Haggren, Professor Hoe Tan, Professor Chennupati Jagadish

Surface forces and the behaviour of colloidal systems

We measure the basic forces that operate between molecules that are manifest at interfaces. These forces control the stability of colloidal systems from blood to toothpaste. We use very sensitive techniques that are able to measure tiny forces with sub nanometer distance resolution. Understanding these forces enables us to predict how a huge variety of colloidal systems will behave.

Professor Vincent Craig

Specific ion effects

We are seeking students to perform fundamental research into how different ions exert influence in a myriad of systems.

Professor Vincent Craig

Solid-state nanopore sensors: Unveiling New Frontiers in Biomolecule Detection

Investigate novel nanopore bio-sensors using nanofabrication, bio-chemsity and machine learning.

Prof Patrick Kluth

Quantum-well nanowire light emitting devices

In this project we aim to design and demonstrate  III-V compound semiconductor based quantum well nanowire light emitting devices with wavelength ranging from 1.3 to 1.6 μm for optical communication applications.

Professor Lan Fu, Dr Ziyuan Li, Professor Hoe Tan, Professor Chennupati Jagadish

Electrically injected metasurface lasers

Metasurfaces have emerged as a cornerstone for next-generation optics and optoelectronics. This project aims to create metasurface lasers from III-V semiconductor thin-films, that are additionally pumped electrically.  

Dr Tuomas Haggren, Professor Hoe Tan, Professor Chennupati Jagadish

Functional nanopore membranes

Nano-pore membranes have important applications in chemical- and bio-sensing, water filtration and protein separation. This project will investigate our innovative technology to fabricate nanopore membranes in silicon dioxide and silicon nitride and exploit their use for advanced applications.

Prof Patrick Kluth

Nanobubbles

Nanobubbles are simply nanosized bubbles. What makes them interesting? Theory tells us they should dissolve in less than a second but they are in some cases stable for days.

Professor Vincent Craig

Positron Annihilation Spectroscopy

Understanding material defects at the atomic scale using anitmatter.

Dr Joshua Machacek, Professor Stephen Buckman

Nanowire infrared avalanche photodetectors towards single photon detection

This project aims to demonstrate semiconductor nanowire based infrared avalanche photodetectors (APDs) with ultra-high sensitivity towards single photon detection. By employing the advantages of their unique one-dimensional nanoscale geometry, the nanowire APDs can be engineered to different device architectures to achieve performance superior to their conventional counterparts. This will contribute to the development of next generation infrared photodetector technology enabling numerous emerging fields in modern transportation, communication, quantum computation and information processing.

Professor Lan Fu, Dr Zhe (Rex) Li, Professor Chennupati Jagadish

Colloidal systems in highly concentrated salt solutions

We are studying colloidal systems in highly concentrated salt solutions. Here a number of surprising and unexplained things happen that are associated with surprisingly long-ranged electrostatic forces

Professor Vincent Craig

Nanowire lasers for applications in nanophotonics

This project aims to investigate the concepts and strategies required to produce electrically injected semiconductor nanowire lasers by understanding light interaction in nanowires, designing appropriate structures to inject current, engineer the optical profile and developing nano-fabrication technologies. Electrically operated nanowire lasers would enable practical applications in nanophotonics.

Professor Chennupati Jagadish, Professor Hoe Tan

High pressure creation of new forms of diamond

The hexagonal form of sp3 bonded carbon is predicted to be harder than 'normal' cubic diamond. We can make tiny amounts of this new form of diamond and want to know if it really is harder than diamond.

Prof Jodie Bradby, Ms Xingshuo Huang

Photonics, Lasers and Nonlinear Optics

Nanostructured Metasurfaces for Optical Telescopes

Traditional optical systems use multiple optical elements to achieve imaging or detection goals. Ground-based and space-based telescopes are limited by manufacturing and engineering constraints. The ultra-thin nature of metasurfaces makes them a superior design choice for optical systems that are constrained by the size, weight and complexity of conventional optics. 

Dr Josephine Munro, Prof Andrey Sukhorukov

Positron interactions with structured surfaces

We are investigating novel effects and applications using positrons and structured surfaces.

Dr Joshua Machacek, Dr Sergey Kruk

Machine learning for optics and controls

Optical cavities are widely used in physics and precision measurement.  This project will explore the use of modern machine learning methods for the control of suspended optical cavities.

A/Prof Bram Slagmolen, Dr Jiayi Qin

Engineering Inter-spacecraft laser links

Inter-satellite laser links are an emerging technology with applications in Earth Observation, telecommunications, security, and, the focus of the CGA space technology group.

Professor Kirk McKenzie, Dr Andrew Wade, Dr Ya Zhang

Developing ultra-high resolution optical meta-surface sensors

The project aims to develop methods to improve the sensitivity of optical metasurfaces for the detection of chemical and biological markers. By tailoring a high-precision optical interferometric sensing solution to the optical properties of a metasurface under-test, the project will improve the sensitivity of these devices, developing a new range of targeted ultra-precise metasurface sensors.

Dr Chathura Bandutunga , Prof Dragomir Neshev

Quantum-well nanowire light emitting devices

In this project we aim to design and demonstrate  III-V compound semiconductor based quantum well nanowire light emitting devices with wavelength ranging from 1.3 to 1.6 μm for optical communication applications.

Professor Lan Fu, Dr Ziyuan Li, Professor Hoe Tan, Professor Chennupati Jagadish

Electrically injected metasurface lasers

Metasurfaces have emerged as a cornerstone for next-generation optics and optoelectronics. This project aims to create metasurface lasers from III-V semiconductor thin-films, that are additionally pumped electrically.  

Dr Tuomas Haggren, Professor Hoe Tan, Professor Chennupati Jagadish

Nanowire infrared avalanche photodetectors towards single photon detection

This project aims to demonstrate semiconductor nanowire based infrared avalanche photodetectors (APDs) with ultra-high sensitivity towards single photon detection. By employing the advantages of their unique one-dimensional nanoscale geometry, the nanowire APDs can be engineered to different device architectures to achieve performance superior to their conventional counterparts. This will contribute to the development of next generation infrared photodetector technology enabling numerous emerging fields in modern transportation, communication, quantum computation and information processing.

Professor Lan Fu, Dr Zhe (Rex) Li, Professor Chennupati Jagadish

Quantum squeezed states for interferometric gravitational-wave detectors

Using non-classical light states on laser interferometric gravitational-wave detectors, to further enhance the best length measurement devices in the world.

Distinguished Prof David McClelland, Professor Daniel Shaddock, A/Prof Bram Slagmolen

Nanowire lasers for applications in nanophotonics

This project aims to investigate the concepts and strategies required to produce electrically injected semiconductor nanowire lasers by understanding light interaction in nanowires, designing appropriate structures to inject current, engineer the optical profile and developing nano-fabrication technologies. Electrically operated nanowire lasers would enable practical applications in nanophotonics.

Professor Chennupati Jagadish, Professor Hoe Tan

Satellite based geodesy

Precise Earth gratitational field measurements with laser-ranging interferometry.

Dr Syed Assad, Professor Ping Koy Lam, Mr Lorcan Conlon, Dr Jie Zhao

Nanowire photodetectors for photonic and quantum systems

Semiconductor nanowires are emerging nano-materials with substantial opportunities for novel photonic and quantum device applications. This project aims at developing a new generation of high performance NW based photodetectors for a wide range of applications.

Professor Lan Fu, Dr Ziyuan Li, Professor Hoe Tan

Physics of Fluids

Understanding drought-resistance in Australian plants with 3D X-ray microscopy

This project will use unique, ANU-designed 3D X-ray microscopes and state-of-the art image analysis to track physiological responses of drought-tolerant Australian plants when subjected to water stress. The results will help us understand the mechanisms that underpin drought-tolerance, helping resolve ongoing debates and helping understand which forest eco-systems that are most vulnerable to climate change, and why.

Prof Adrian Sheppard, Dr Levi Beeching, Dr Andrew Kingston

Physics of the Nucleus

Towards a global understanding of nuclear fission

Improved understandings of nuclear fission is key for many areas of science, including heavy element formation in supernova and neutron-star mergers, making safer nuclear reactors, and the formation and properties of long-lived superheavy isotopes. Students involved in this project will further our understanding of fission across the chart of nuclides.

Dr Kaitlin Cook, Emeritus Professor David Hinde, Professor Mahananda Dasgupta

Understanding energy dissipation in colliding quantum many-body systems

This project aims to gain fundamental insights into the mechanisms of energy dissipation in nuclear collisions by making new measurements that will aid in the development of new models of nuclear fusion.

Dr Kaitlin Cook, Professor Mahananda Dasgupta, Emeritus Professor David Hinde

Ultra-fast lifetime measurements of nuclear excited states

Use ultra-fast gamma-ray detectors to perform excited-state lifetime measurements and investigate single-particle and collective features of atomic nuclei. 

Professor Gregory Lane, Dr AJ Mitchell, Professor Andrew Stuchbery, Emeritus Professor Tibor Kibedi

Measuring electric quadrupole moments - the shapes of atomic nuclei

New methods to determine the shapes of atomic nuclei via the measurement of their electric quadrupole moment are being developed. Most nuclei are prolate spheroids - shaped like an Australian Rules football. As well as giving a picture of the nucleus, the quadrupole moment is an important observable to test theory. 

Professor Andrew Stuchbery, Dr AJ Mitchell, Professor Gregory Lane, Mr Ben Coombes

Nuclear vibrations in near-spherical and deformed nuclei

This project aims to discover if the long-held concept of low-energy nuclear vibrations holds true under scrutiny from Coulomb excitation and nucleon-transfer reactions. 

Professor Andrew Stuchbery, Professor Gregory Lane, Dr AJ Mitchell, Mr Ben Coombes

Plasma Applications and Technology

High pressure non-equilibrium plasma discharges in chemically reactive systems

The goal of this research is to study high pressure non-equilibrium plasma discharges in chemically reactive systems with applications to space, waste treatment and material science.

A/Prof Cormac Corr

Quantum Science and Technology

Quantum algorithms for combinatorial optimisation problems

Developing new quantum and quantum-inspired classical algorithms to find good solutions for NP-hard problems.

Dr Syed Assad

Miniature absolute gravimeter for long-term gravity surveys

Absolute gravimeters tie their measurement of gravity to the definition of the second 
by interrogating the position of a falling test mass using a laser interferometer. Our vision is to develop and prototype a miniaturised absolute gravimeter by 
leveraging modern vacuum, laser, and micro-electromechanical systems.

Dr Samuel Legge, Professor John Close, Prof Patrick Kluth, Dr Giovanni Guccione

Mass-entangled ultracold helium atoms

This experimental project aims to create entangled states of ultracold helium atoms where the entanglement is between atoms of different mass. By manipulating the entangled pairs using laser induced Bragg transitions and measuring the resulting correlations, we will study how gravity affects mass-entangled particles.

Dr Sean Hodgman, Professor Andrew Truscott

Beam matching using machine learning

This project aims to use a machine learning algorithm to perform beam alignment in an optics experiment. It would involve mode-matching two optical beams using motorised mirror mounts. Additional degrees of freedom like lens positions and beam polarisation can be added later.

Dr Syed Assad, Dr Aaron Tranter, Dr Jie Zhao

Optical quantum memory

An optical quantum memory will capture a pulse of light, store it and then controllably release it. This has to be done without ever knowing what you have stored, because a measurement will collapse the quantum state. We are exploring a "photon echo" process to achieve this goal.

Professor Ben Buchler

Vibration control for optical interferometry

Develop an active vibraiton isolation platform to provide a quiet, small displacement environment for high precision inteferometry.

A/Prof Bram Slagmolen, Distinguished Prof David McClelland

Experimental quantum simulation with ultracold metastable Helium atoms in an optical lattice

This project will construct a 3D optical lattice apparatus for ultracold metastable Helium atoms, which will form an experimental quantum-simulator to investigate quantum many-body physics. A range of experiments will be performed such as studying higher order quantum correlations across the superfluid to Mott insulator phase transition.

Dr Sean Hodgman, Professor Andrew Truscott

Quantum multi-parameter estimation

Multi-parameter state estimation at the fundamental precision limit

Dr Syed Assad, Professor Ping Koy Lam, Mr Lorcan Conlon, Dr Jie Zhao

Dual torsion pendulum for quantum noise limited sensing

Construct a small dual tosion pendulum which have their centre of mass co-incide and their rotational axis colinear. Inital diagnostics will be done using shadow sensors.

A/Prof Bram Slagmolen, Distinguished Prof David McClelland

Prospects of future ground-based gravitational-wave detector network

In this project, we study the gravitational-wave astronomy and astrophysics science cases and observational prospects with future ground-based gravitational-wave observatories.

Dr Lilli (Ling) Sun, A/Prof Bram Slagmolen, Distinguished Prof David McClelland

Interactions between antimatter and ultracold atoms

Antiparticles and antimatter have progressed from theory and science fiction to become an important and exciting area of pure and applied science. This fundamental atomic physics project will investigate how antimatter and matter interact by experimentally studying the interaction of positrons (the electron anti-particle) with trapped ultracold rubidium atoms.

Dr Sean Hodgman, Professor Stephen Buckman, Dr Joshua Machacek

Quantum super resolution

When two point sources of light are close together, we just see one blurry patch. This project aims to use coherent measurement techniques in quantum optics to measure the separation between the point sources beyond the Rayleigh's limit.

Dr Syed Assad, Professor Ping Koy Lam, Dr Jie Zhao

Efficient optical interconnect for quantum computers

Superconducting and spin qubits are leading quantum computing technologies, but we currently have no way to connect them to optical quantum networks that will make up a future quantum internet. This project will develop an interconnect capable of efficiently converting microwave quantum information from these qubits to optical frequencies.

Dr Rose Ahlefeldt

Quantum squeezed states for interferometric gravitational-wave detectors

Using non-classical light states on laser interferometric gravitational-wave detectors, to further enhance the best length measurement devices in the world.

Distinguished Prof David McClelland, Professor Daniel Shaddock, A/Prof Bram Slagmolen

Satellite based geodesy

Precise Earth gratitational field measurements with laser-ranging interferometry.

Dr Syed Assad, Professor Ping Koy Lam, Mr Lorcan Conlon, Dr Jie Zhao

Theoretical Physics

Stochastic dynamics of interacting systems and integrability

There are many interesting physical statistical systems which never reach thermal equilibrium. Examples include surface growth, diffusion processes or traffic flow. In the absence of general theory of such systems a study of particular models plays a very important role. Integrable systems provide examples of such systems where one can analyze time dynamics using analytic methods.

A/Prof Vladimir Mangazeev

Introduction to quantum integrable systems

The aim of this project is to introduce quantum integrable systems which play a very important role in modern theoretical physics. Such systems provide one of very few ways to analyze nonlinear effects in continuous and discrete quantum systems.

A/Prof Vladimir Mangazeev

Quantum multi-parameter estimation

Multi-parameter state estimation at the fundamental precision limit

Dr Syed Assad, Professor Ping Koy Lam, Mr Lorcan Conlon, Dr Jie Zhao

Measuring electric quadrupole moments - the shapes of atomic nuclei

New methods to determine the shapes of atomic nuclei via the measurement of their electric quadrupole moment are being developed. Most nuclei are prolate spheroids - shaped like an Australian Rules football. As well as giving a picture of the nucleus, the quadrupole moment is an important observable to test theory. 

Professor Andrew Stuchbery, Dr AJ Mitchell, Professor Gregory Lane, Mr Ben Coombes