Potential student research projects

The Research School of Physics & Engineering performs research at the cutting edge of a wide range of disciplines.

By undertaking your own research project at RSPE you could open up an exciting career in science.

Filter projects

Quantum Devices and Technology

Quantum Device Engineering

For quantum technologies to transition to real-world applications, there are a multitude of engineering challenges to be solved. Using diamond NV centres, our group is developing small-scale quantum computers, and quantum microscopes sensing electric and magnetic fields down to the nanoscale. Available project themes include instrumentation, experiment control, machine learning, and optimal control. 

Dr Andrew Horsley, Dr Marcus Doherty, Dr Michael Barson

Exploring physics with neural networks

Machine learning based on deep neural networks is a powerful method for improving the performance of experiments.  It may also be useful for finding new physics.

Dr Ben Buchler, Professor Ping Koy Lam, Dr Geoff Campbell

Quantum limited magnetometry

Develop  new techniques to enhance vapor cell quantum magnetometry.

Professor John Close

Quantum Wavelets

In this project, we represent an expanding quantum wavepacket in a wavelet basis and use the representation to analyse new data from a state of the art quantum gravity sensor.

Professor John Close, Dr Stuart Szigeti

Development of Squeezed Laser Sources for Quantum Communication

Student will build and characterise a new source of quantum squeezed light genearted from an optical parametric oscillator

Professor Ping Koy Lam, Dr Ben Buchler

Second Harmonic Generation for Quantum Optics Applications

Student will develop a source of laser light at 775nm that will be utilised for pumping of squeezing cavities  

Professor Ping Koy Lam, Dr Ben Buchler

An atom trap in the vacuum of space

The aim of this project is to design, construct and test an atom trap that exploits the vacuum of space to reduce size, weight and power of standard technology and make it more suitable for space deployment.

Professor John Close

Developing a quantum memory for the 1550 nm optical communication band

In this project you will develop a quantum memory for storing light at 1550 nm using erbium doped crystals.

Associate Professor Matthew Sellars, Dr Kate Ferguson

Quantum Squeezing Atomic Ensembles

The aim of this project is to explore theoretically the application of quantum squeezing to a variety of quantum sensors and to incorporate optimal quantum squeezing into the design quantum gravimeters and quantum magnetometers.

Professor John Close, Dr Stuart Szigeti

Diamond quantum computing and communications

This project aims to engineer diamond quantum computers and communication networks.

Dr Marcus Doherty, Dr Andrew Horsley

Beam matching using machine learning

This project aims to use a machine learning algorithm to perform beam alignment in an optics experiment. It would involve mode-matching two optical beams using motorised mirror mounts. Additional degrees of freedom like lens positions and beam polarisation can be added later.

Dr Syed Assad, Mr Aaron Tranter, Mr Harry Slatyer

Space based quantum limited accelerometers for satellite control

The aim of this project is to design, construct and test a space based quantum accelerometer for satellite navigation.

Professor John Close

Quantum microscopes for revolutionary interdisciplinary science

This project aims to invent and apply quantum microscopes to solve major problems across science.

Dr Marcus Doherty, Dr Michael Barson, Mr Liam McGuinness

Storing quantum entangled states of light

In this project you will demonstrate the storage of quantum entangled states of light using quantum memories based on rare-earth doped crystals.

Associate Professor Matthew Sellars, Dr Rose Ahlefeldt, Dr Kate Ferguson

Developing a planar waveguide photonic quantum processor

This project aims to develop a photonic quantum processor based on a planar waveguide architecture incorporating rare-earth doped crystals.

Associate Professor Matthew Sellars, Associate Professor Duk-Yong Choi

Microfabricated quantum gravimeters

In this project, we will design, construct and test a microfabcircated free-fall, gravimeter.

Professor John Close

Discovering quantum defects in diamond and related materials

This project aims to discover and study defects in diamond and related materials that are suitable for quantum technology.

Dr Marcus Doherty, Professor Neil Manson

Optical quantum memory

An optical quantum memory will capture a pulse of light, store it and then controllably release it. This has to be done without ever knowing what you have stored, because a measurement will collapse the quantum state. We are exploring a "photon echo" process to achieve this goal.

Dr Ben Buchler

Source-independent quantum random number generator

We aim to generate random numbers by performing orthogonal quadrature homodyne measurements without actually knowing or trusting the quantum state that we are measuring.

Dr Syed Assad, Professor Ping Koy Lam, Mr Jing-Yan Haw

Some other physics related research projects may be found at the ANU College of Engineering & Computer Science and the Research School of Astronomy & Astrophysics

Updated:  29 April 2019/ Responsible Officer:  Director, RSPE/ Page Contact:  Physics Webmaster