Potential student research projects

The Research School of Physics & Engineering performs research at the cutting edge of a wide range of disciplines.

By undertaking your own research project at RSPE you could open up an exciting career in science.

Filter projects

Materials Science and Engineering

Why does the English willow make the best cricket bat?

In this project, we will investigate the microstructure of wood using 3D microscopes and a host of interesting analytical tools.

Dr Mohammad Saadatfar, Prof Phil Evans

High-density artifact correction in x-ray micro-tomography

High-density objects in specimens of interest (e.g., metal-pins in biological specimens), can cause significant quality degradation of 3D images produced at our micro-tomography facility. This project explores/compares techniques in hardware to avoid the problem and techniques in software to correct for the problems caused by these objects.

Dr Andrew Kingston, Dr Glenn Myers, Prof Adrian Sheppard

Force networks in granular materials: imaging, pattern recognition and data mining

This project employs an integrated experimental and analytical approach to interrogate granular materials (e.g., soil, sand and sedimentary rocks, powder, colloidal systems, coal, snow etc.).  The experimental part, undertaken at ANU, involves the accurate experimental measurement and 3D visualisation of contact forces at the contacts between particles. The analytical part, undertaken at UoM, focuses on “mining” hidden patterns in the experimental data, using new tools from mathematics and statistics of complex systems.

Dr Mohammad Saadatfar

Three-dimensional crystalline structures from two-dimensional hyperbolic tilings

A variety of projects are available that will contribute to the enumeration and characterisation of 3-periodic network structures via the tiling of periodic minimal surfaces and thereby enhance our understanding of self-assembled structures in nature.

Dr Vanessa Robins, Professor Stephen Hyde

Organic-inorganic perovskite materials for high performance photovoltaics

In this project, we will characterise actual device solar cell structures with electron microscopy techniques and seek to understand the microscopic effects behind the device performance and reliability

A/Prof Jennifer Wong-Leung

Compression of 3D X-ray imaging data

The CT lab hosts several 3D X-ray imaging systems, each generating ~240GB/day of data. The student will: (i) explore various data compression schemes; (ii) theoretically and empirically analyse interactions between data compression, X-ray image processing, and 3D analysis; (iii) develop new 3D imaging methods, based on successful data compression schemes

Dr Glenn Myers, Dr Andrew Kingston, Prof Adrian Sheppard

Granular materials: understanding their geometry and physics

What is a granular material from geometry and physics perspective? We'll try to understand the fundementals of granular materials in this project.

Dr Mohammad Saadatfar, Dr Nicolas Francois, Dr Vanessa Robins, Prof Timothy Senden

Intelligent 3D X-ray imaging, for improved analysis of complex 3D images.

This project will develop new methods for "intelligent" processing of 3D X-ray data (i.e. methods which use a priori information). These new methods will double as a non-traditional approach to automated image analysis; the project will compare this new approach with more traditional methods.

Dr Glenn Myers, Dr Andrew Kingston, Prof Adrian Sheppard

A new tool for measuring structural changes under pressure

This project is supported by an ARC Linkage project with a US nanoindentation company who is very keen to work with our group to develop this new capability in 2018/19.

Prof Jodie Bradby, Emeritus Professor Jim Williams

Electron scattering from surfaces at high energies

The project aims at establishing the possibilities of high-energy electron scattering in the analysis of thin layers. 

A/Prof Maarten Vos

Investigating extreme environments using diamond anvil cells

High pressure diamond anvil cells often use a gas or salt solids a form of pressure medium. However, the effect of being squeezed with such materials is unknown for many systems including the novel forms of amorphous silicon, germanium and carbon studied by this ANU-based group.

Prof Jodie Bradby

4D structural characterization of carbon-sequestering cements

This project will use high resolution 3D X-ray computed tomography to characterise the evolving structure of reactive magnesium cement materials over months-long time frames, in order to learn how to optimise cement composition and initial structure to enhance CO2 uptake and cement strength, while at the same time minimizing clogging.

Dr Anna Herring, Dr Mohammad Saadatfar, Prof Adrian Sheppard

Nanoporous antimonides

Investigate the fascinating porous structures of ion irradiated GaSb and InSb

A/Prof Patrick Kluth, Dr Christian Notthoff

Solar Fuels Generation using III-V Semiconductors

This project aims to develop III-V semiconductors for applicaiton in solar fuels generation. 

Dr Siva Karuturi, Professor Chennupati Jagadish AC, Professor Hoe Tan

Fundamental investigation of fission tracks for geo- and thermochronology

Study the formation and stability of high energy ion tracks in minerals under controlled environments with importance for geological dating techniques.

A/Prof Patrick Kluth

Mechanical properties of plant cells

This project aims to investigate how the mechnical properties of plant cells change with 'poking' from an external source. In nature the poking is by a pathogen. We mimic this effect with a diamond tip.

Prof Jodie Bradby, Ms Toby Hendy

Electromagnetic metamaterials

Metamaterials are complex structures whose electromagnetic parameters can be engineered. We have several theoretical and experimental projects aiming to design artificial materials that exhibit properties not found in nature.

Professor Ilya Shadrivov, Dr David Powell, Dr Mingkai Liu

Solar cells without p-n junctions

Simplify nanowire solar cell fabrication by eliminating the need for p-n junctions to increase the ultimate device efficiency.

Professor Hoe Tan, Professor Chennupati Jagadish AC, Dr Kaushal Vora

Functional Nanopore Membranes

Development of novel composite nanopore membranes.

A/Prof Patrick Kluth

Controlling the properties of 2D materials by defect engineering

This project investigates the structure and density of defects created in 2D materials by energetic ion irradiation, and studies how such defects affect the physical properties of this important class of materials.

Professor Robert Elliman

Solid state synapses and neurons - memristive devices for neuromorphic computing

Interest in biomimetic computing has led to interest in an excting new range of of solid-state neurons and synapses based on non-volatile resistive-switching and volatile threshold-switching in metal-oxide thin films.  This project will explore the operation and functionality of these new devices.

Professor Robert Elliman, Dr Sanjoy Nandi

Multi-spectral x-ray micro-tomography

The ANU X-ray micro-tomography facility images over a broad spectrum (or range) of X-ray energies. The behaviour of specimens of interest at different X-ray energies can tell us a lot about its composition. This project will explore 1) techniques to image specimens at various X-ray spectral-bands, and 2) methods to analyse the results.

Dr Andrew Kingston, Dr Glenn Myers, Prof Adrian Sheppard

UV nano-LEDs

Development of nanowire LEDs for small, robust and highly portable UV sources.

Professor Chennupati Jagadish AC, Professor Hoe Tan

3D phantoms for X-ray micro-tomography

"Phantoms" are objects used for performance testing and/or calibration of 3D X-ray computed tomography (CT) systems. This project involves designing, 3D printing, and subsequently imaging phantoms at the micro-CT facility of the Applied Maths department.

Dr Andrew Kingston, Dr Glenn Myers, Prof Adrian Sheppard, Prof Timothy Senden

Nuclear moments and intense hyperfine fields in ferromagnetic media

This project evaluates data at the interface of nuclear, atomic and solid-state physics with a view to discovering new physics and providing reliable data on the magnetic moments of short-lived nuclear quantum states. It assists the International Atomic Energy Agency to provide reliable nuclear data for research and applications.

Professor Andrew Stuchbery, Mr Timothy Gray, Mr Ben Coombes, Mr Brendan McCormick

Nano-bubble formation in fusion relevant materials

Fusion energy promises millions of years of clean energy, but puts extreme stress on materials. This research will resolve scientific issues surrounding plasma-material interactions to guide and facilitate development of future advanced materials for fusion reactors.

Dr Cormac Corr, A/Prof Patrick Kluth, Dr Matt Thompson

3D print pedagogical models of periodic minimal surfaces

Explore the geometry and symmetries of some periodic minimal surfaces and learn about their relevance in chemical and biological self assembly.

Dr Vanessa Robins

Promoting shear to create new forms of diamond under pressure

Traditional high-pressure studies have opted to avoid the creation of shear by the use of local gas and liquid enviroments. However, we have recently shown that shear is key to formation of an new form of diamond.

Prof Jodie Bradby

Patterns on closed curved surfaces

In this project, we will study the formation of regular patterns, as well as defects, on closed curved surfaces such as boundaries of granular packings.

Dr Mohammad Saadatfar, Dr Nicolas Francois, Professor Stephen Hyde, Prof Timothy Senden

Resistive switching in transition-metal oxides and its use in nonvolatile memory devices

This project will combine experimental work, computer simulation and modelling to investigate the physical processes underpinning resistive switching in transition metal oxides (e.g. Ta2O5, HfO2, Nb2O5 and NbO2) and to explore its application in future non-volatile memory (i.e. ReRAM) devices.

Professor Robert Elliman, Dr Sanjoy Nandi

What determines the equilibrium shapes within a crystalline nanoworld?

The equilibrium shape of voids or crystals is largely influenced by the total surface energies encompassing these 3D objects. This aim of this project is to extract the surface energies of different planes from transmission electron microscopy images of faceted voids and nanowires.

A/Prof Jennifer Wong-Leung

Improving Magnetic Resonance Imaging with metamaterials

This project aims to design composite structures, or metamaterials, that will enhance the performance of the Magnetic Resonance Imaging Machines which are being used in the hospitals.

Professor Ilya Shadrivov, Professor Yuri Kivshar

Soft Condensed Matter: Molecules made by Threading

Of great recent interest is the subject of rotaxanes.  Rotaxanes are molecules  where one or more ring
components is threaded onto an axle that is capped on both ends with stoppers to prevent the rings from
falling o ff. These systems exhibit complex and fascinating physics.

Professor David Williams

Singling out the depletion region in semiconductor devices by scanning electron microscopy

Scanning electron microscopy is a powerful tool for materials and this method is believed to correctly identify depletion regions in semiconductor devices. This project links the electron microscopy contrast  to the depletion regions measured by capacitance-voltage measurements in some devices with an aim to understanding the source of contrast. 

A/Prof Jennifer Wong-Leung, Dr Mark Lockrey

Exciton polaritons in 2D atomically thin materials

This experimental project will focus on nvestigation of strong light-matter coupling and exciton polaritons in novel atomically thin materials.

A/Prof Elena Ostrovskaya, Professor Andrew Truscott

Studies on the effect of He irradiation on the microstructure and mechanical properties of W/ W alloys

Nuclear fusion is a promising technology for solving the world’s energy crisis while drastically reducing pollution and avoiding the creation of nuclear waste, a major issue for nuclear fission. However, there are many scientific and technical challenges to be overcome before this technology can be used for large-scale energy generation. One of the problems that need to be solved is the tolerance of the diverter walls to the high temperatures and He implantation – conditions that are prevalent inside the fusion reactors.

Dr Cormac Corr

Wave dispersion in stringed instruments: What makes tuning a piano so hard?

Ideal strings have wave speeds that are identical for all frequencies.  In real life, strings have some stiffness that makes higher frequency waves are faster.  This means building and tuning some stringed instruments, like pianos, is very tricky. This project aims to accurately measure wave speeds on piano strings.

Dr Ben Buchler

Ultra-short laser induced micro-explosion: A new route to synthesise novel high-pressure phases

This project aims to synthesise novel metastable material phases by ultrafast laser-induced microexplosion confined within a material’s bulk.

Professor Andrei Rode, Associate Professor Eugene Gamaly

Exploring the nature of deep levels in high performance ZnO Schottky diodes

This projects combines ion implantation and deep level transient spectroscopy to study electrically active deep level defects in wide bandgap semiconductors.

A/Prof Jennifer Wong-Leung

Diagnosing plasma-surface interactions under fusion-relevant conditions

This project involves studying the complex plasma-surface interaction region of a fusion-relevant plasma environment through laser-based and spectroscopic techniques.

Dr Cormac Corr, Dr Matt Thompson

Shape engineering of semiconductor nanostructures for novel device applications

This project aims to investigate the growth of III-V semiconductors on pre-patterned nanotemplates. By using different shapes and geometries, it is envisaged that these nanostructures will provide novel architectures for advanced, next generation optoelectronic devices.

Professor Hoe Tan, Professor Chennupati Jagadish AC

Metamaterials for Terahertz wave manipulation

Terahertz frequency range is the least explored part of the electromagnetic spectrum, and we work towards using it in a range of breakthrough imaghing, security and communication applications. We offer a range of Honours, Masters and PhD projects, which include theoretical, numerical and experimental work with terahertz metamaterials.

Professor Ilya Shadrivov, Dr Mingkai Liu, Dr David Powell

Some other physics related research projects may be found at the ANU College of Engineering & Computer Science and the Research School of Astronomy & Astrophysics

Updated:  29 April 2019/ Responsible Officer:  Director, RSPE/ Page Contact:  Physics Webmaster