Potential student research projects

The Research School of Physics performs research at the cutting edge of a wide range of disciplines.

By undertaking your own research project at ANU you could open up an exciting career in science.

Filter projects

Some other physics related research projects may be found at the ANU College of Engineering & Computer Science, the Mathematical Sciences Institute and the Research School of Astronomy & Astrophysics

Materials Science and Engineering

Ultrafast laser cleaning - The light touch

Laser Cleaning is a cutting-edge technique designed for removal of contamination layers from solid surfaces by irradiating the surface with a laser beam. It is a non-contact process, which does not require the use of chemicals or abrasives, eliminating problems of chemical toxicity, corrosive residues, and erasure of surface structure. 

Dr Ludovic Rapp

Quantitative x-ray imaging with patterned illumination

In this project the student will explore a cutting-edge "speckle tracking" method for measuring X-ray phase, in which computational image analysis is used to infer the X-ray phase from deformations in a known speckle pattern. This has both theoretical and experimental components.

Dr Glenn Myers, Dr Andrew Kingston

Nano-bubble formation in fusion relevant materials

Fusion energy promises millions of years of clean energy, but puts extreme stress on materials. This research will resolve scientific issues surrounding plasma-material interactions to guide and facilitate development of future advanced materials for fusion reactors.

A/Prof Cormac Corr, Prof Patrick Kluth, Dr Matt Thompson

Electrically-injected bottom-up III-V micro-cavity lasers

Bottom-up fabrication of lasers via epitaxial growth has been emerging as a promising alternative to the conventional top-down fabrication methods. In this project, we aim to demonstrate electrically-injected lasing in InP/InAsP multi-quantum well micro-ring cavities that are grown by the selective area epitaxy technique.

Dr Wei Wen Wong, Dr Tuomas Haggren, Professor Hoe Tan, Professor Chennupati Jagadish

GeSn defect properties measured by nanoindentation

To understand defects in metal-semiconductor alloys, specifically GeSn in this project, to help making better alloy films and devices.

Dr Xingshuo Huang, Prof Jodie Bradby, Emeritus Professor Jim Williams

Efficient optical interconnect for quantum computers

Superconducting and spin qubits are leading quantum computing technologies, but we currently have no way to connect them to optical quantum networks that will make up a future quantum internet. This project will develop an interconnect capable of efficiently converting microwave quantum information from these qubits to optical frequencies.

Dr Rose Ahlefeldt

Flexible GaN-based UV photodetectors

Flexible GaN for applications in wearable and flexible electronics.

Dr Sonachand Adhikari, Professor Hoe Tan, Professor Chennupati Jagadish

Nanofluidic diodes: from biosensors to water treatment

Controlling the flow of ions and molecules through nano-sized pores is fundamental in many biological processes and the basis for applications such as DNA detection, water desalination and drug delivery. The project aims to develop solid-state nanofluidic diodes and exploit their properties for applications in bio-sensors and ion-selective channels.

Prof Patrick Kluth

The effect of He irradiation on the microstructure and mechanical properties of W/ W alloys

Nuclear fusion is a promising technology for solving the world’s energy crisis while drastically reducing pollution and avoiding the creation of nuclear waste, a major issue for nuclear fission. However, there are many scientific and technical challenges to be overcome before this technology can be used for large-scale energy generation. One of the problems that need to be solved is the tolerance of the diverter walls to the high temperatures and He implantation – conditions that are prevalent inside the fusion reactors.

A/Prof Cormac Corr, Dr Matt Thompson

Machine learning for tomographic reconstruction

Machine learning (and in particular deep-learning) methods have been at the centre of amazing progress in the field of computational image analysis. In this project the student will work to develop machine-learning algorithms for tomographic reconstruction, and deploy these algorithms at the ANU CTLab imaging facility.

Dr Glenn Myers, Dr Andrew Kingston

Ultrashort laser processing for advanced applications

Laser processing is a cutting-edge technique designed for to clean, texture, enhance surfaces in a way not possible with any other method. It is a non-contact process, which does not require the use of chemicals or abrasives, thus eliminating problems of chemical toxicity and corrosive residues.

Dr Ludovic Rapp, Professor Andrei Rode

X-ray scatter in 3D microscopes

X-ray scatter is most significant when imaging very dense/large samples: e.g. metal parts, large 3D printed components, or samples imaged on the CTLab's new "whole core" scanner. The student will develop methods to correct for its effects, both in-hardware (i.e. at the microscope) and in-software (i.e. image analysis).

Dr Andrew Kingston, Dr Glenn Myers, Prof Adrian Sheppard

Investigating the morphology, composition, and mechanics of native grains

The domestication of several native grain-bearing species is currently being assessed by different research groups across Australia. However, the mechanical behaviour and related suitability to industrial processing methods have not previously been investigated. This project aims to develop baseline mechanical data for indigenous grains that are undergoing assessment for potential agricultural development.

Dr Aleese Barron, Associate Professor Nicolas Francois

Diagnosing plasma-surface interactions under fusion-relevant conditions

This project involves studying the complex plasma-surface interaction region of a fusion-relevant plasma environment through laser-based and spectroscopic techniques.

A/Prof Cormac Corr, Dr Matt Thompson

Shape engineering of semiconductor nanostructures for novel device applications

This project aims to investigate the growth of III-V semiconductors on pre-patterned nanotemplates. By using different shapes and geometries, it is envisaged that these nanostructures will provide novel architectures for advanced, next generation optoelectronic devices.

Professor Hoe Tan, Professor Chennupati Jagadish

Wearable III-V nanofilm photodetectors and sensors

Semiconductor nanofilms are just some tens of nanometres thick single-crystalline structures with lateral dimensions in cm-scale. The ultra-low thickness gives these films interesting properties differing from bulk materials, and enables interesting novel device concepts in photodetection and gas sensing.

Dr Tuomas Haggren, Professor Hoe Tan, Professor Chennupati Jagadish

Solving the problem of how to measure a material harder than diamond

In experiments, measuring the hardness of a very hard material is fundamentally challenging. We aim to study the physical mechanics behind nanoindentation measurements to help better measure superhard materials.

Dr Xingshuo Huang, Prof Jodie Bradby

Positron interactions with structured surfaces

We are investigating novel effects and applications using positrons and structured surfaces.

Dr Joshua Machacek, Dr Sergey Kruk

Bottom-up, parity-time (PT) symmetric micro-cavity lasers

In this project, we aim to explore PT-symmetric lasing in III-V semiconductor micro-cavity lasers that are epitaxially grown on their substrates, free from any etching-induced damage. In particular, we aim to demonstrate performance improvements by exploiting some of the unique features of bottom-up grown laser cavities.

Dr Wei Wen Wong, Professor Hoe Tan, Professor Chennupati Jagadish

Positron Annihilation Spectroscopy

Understanding material defects at the atomic scale using anitmatter.

Dr Joshua Machacek, Professor Stephen Buckman

Exciton polaritons in 2D atomically thin materials

This experimental project will focus on nvestigation of strong light-matter coupling and exciton polaritons in novel atomically thin materials.

Prof Elena Ostrovskaya, Professor Andrew Truscott

Nano-scale III-V light emitters on Si

While there have been numerous demonstrations of planar growth of III-V materials on Si substrates, growing III-V nanostructures directly on Si is not a trivial task. In this project, we aim to demonstrate the direct growth of InP/InAsP light-emitting nanostructures on Si substrates by engineering the III-V/Si interfacial energy. 

Dr Wei Wen Wong, Professor Hoe Tan, Professor Chennupati Jagadish

Creation of novel hybrid boron nitride materials

This project focussed on the creation of novel hybrid boron nitride materials by utilizing advanced green techniques of mechanochemistry and high-pressure methods. 

Prof Jodie Bradby

Nanowire photodetectors for photonic and quantum systems

Semiconductor nanowires are emerging nano-materials with substantial opportunities for novel photonic and quantum device applications. This project aims at developing a new generation of high performance NW based photodetectors for a wide range of applications.

Professor Lan Fu, Dr Ziyuan Li, Professor Hoe Tan

Flexible, Cost-effective III-V Semiconductor-Perovskite Tandem Solar Cells

This project aims to develop high efficiency, cost-effective III-V semiconductor-perovskite tandem solar cells which are flexible and lightweight, while achieving excellent device stability.

Professor Hoe Tan, Dr Tuomas Haggren, Professor Chennupati Jagadish

Bottom-up, quasi-bound states in the continuum (quasi-BIC) metasurface lasers

In this project, we aim to demonstrate lasing in a bottom-up metasurface device supporting a perturbed symmetry-protected, quasi-BIC mode. The unit cell of the metasurface consists of a pair of InP nanosheet structures that are grown with the selective area epitaxy technique. 

Dr Wei Wen Wong, Professor Hoe Tan, Professor Chennupati Jagadish

Neutron and X-ray imaging/tomography techniques at ANSTO & Australian Synchrotron

This project involves working with scientists from imaging beamlines at the Australian Synchrotron (IMBL, XFM, MCT) and the Lucas Heights nuclear reactor (DINGO) to develop multi-modal, multi-scale, and dynamic imaging and tomography techniques alongside computational imaging scientists from ANU.

Dr Andrew Kingston, Dr Glenn Myers

Creating new materials using pressure and diamond anvil cells

New forms of materials can be made using extreme pressures via diamond anvil cells.

Prof Jodie Bradby, Dr Xingshuo Huang

Functional nanopore membranes

Nano-pore membranes have important applications in chemical- and bio-sensing, water filtration and protein separation. This project will investigate our innovative technology to fabricate nanopore membranes in silicon dioxide and silicon nitride and exploit their use for advanced applications.

Prof Patrick Kluth

High pressure creation of new forms of diamond

The hexagonal form of sp3 bonded carbon is predicted to be harder than 'normal' cubic diamond. We can make tiny amounts of this new form of diamond and want to know if it really is harder than diamond.

Prof Jodie Bradby, Dr Xingshuo Huang

Colloidal systems in highly concentrated salt solutions

We are studying colloidal systems in highly concentrated salt solutions. Here a number of surprising and unexplained things happen that are associated with surprisingly long-ranged electrostatic forces

Professor Vincent Craig

Deblur by defocus in a 3D X-ray microscope

This project will involve building a unified model of several theoretically-complex X-ray behaviours within the microscopes at the ANU CTLab, drawing from statistical and wave optics: spatial partial-coherence, refraction, and spectral interactions. The student will then apply this model to improve imaging capabilities at the ANU CTLab.

Dr Glenn Myers, Dr Andrew Kingston

Making diamond from disordered forms of carbon

We have shown that glassy carbon is a fascinating material which has different properties depending on thow it was formed. The effect on how order and impurities influences the new phases formed under pressure is not understood.

Prof Jodie Bradby, Dr Xingshuo Huang