Potential student research projects

The Research School of Physics performs research at the cutting edge of a wide range of disciplines.

By undertaking your own research project at ANU you could open up an exciting career in science.

Filter projects

Some other physics related research projects may be found at the ANU College of Engineering & Computer Science, the Mathematical Sciences Institute and the Research School of Astronomy & Astrophysics

Astrophysics

Simulating cosmic-ray interactions with materials for dark matter and commercial applications

This project uses Geant4 simulations to investigate how naturally occurring cosmic rays interact with materials relevant to physics and environmental research, including NaI(Tl) crystals, gaseous detectors, and soil.

Dr Yiyi Zhong, Dr Lindsey Bignell

Advanced detector development for rare event particle physics

Experimental, simulation, and data analysis projects are available to help develop advanced detection technology which will form the basis of a future large particle physics experiment in Australia

Dr Lindsey Bignell, Dr Robert Renz Marcelo Gregorio, Miss Victoria Bashu, Professor Gregory Lane

Positron Annihilation Spectroscopy

Understanding material defects at the atomic scale using anitmatter.

Dr Joshua Machacek, Professor Stephen Buckman

Atomic and Molecular Physics

Positron Annihilation Spectroscopy

Understanding material defects at the atomic scale using anitmatter.

Dr Joshua Machacek, Professor Stephen Buckman

Positron interactions with structured surfaces

We are investigating novel effects and applications using positrons and structured surfaces.

Dr Joshua Machacek, Dr Sergey Kruk

Interactions between antimatter and ultracold atoms

Antiparticles and antimatter have progressed from theory and science fiction to become an important and exciting area of pure and applied science. This fundamental atomic physics project will investigate how antimatter and matter interact by experimentally studying the interaction of positrons (the electron anti-particle) with trapped ultracold rubidium atoms.

Dr Sean Hodgman, Professor Stephen Buckman, Dr Joshua Machacek

Biophysics

Specific ion effects

We are seeking students to perform fundamental research into how different ions exert influence in a myriad of systems.

Professor Vincent Craig

Positron Annihilation Spectroscopy

Understanding material defects at the atomic scale using anitmatter.

Dr Joshua Machacek, Professor Stephen Buckman

Solid-state nanopore sensors: Unveiling new frontiers in biomolecule detection

Investigate novel nanopore bio-sensors using nanofabrication, bio-chemsity and machine learning.

Prof Patrick Kluth

Clean Energy

Creating new materials using pressure and diamond anvil cells

New forms of materials can be made using extreme pressures via diamond anvil cells.

Prof Jodie Bradby, Dr Xingshuo Huang

Engineering in Physics

Positron Annihilation Spectroscopy

Understanding material defects at the atomic scale using anitmatter.

Dr Joshua Machacek, Professor Stephen Buckman

Creating new materials using pressure and diamond anvil cells

New forms of materials can be made using extreme pressures via diamond anvil cells.

Prof Jodie Bradby, Dr Xingshuo Huang

Machine learning for optics and controls

Optical cavities are widely used in physics and precision measurement.  This project will explore the use of modern machine learning methods for the control of suspended optical cavities.

A/Prof Bram Slagmolen, Dr Jiayi Qin, Professor Robert Ward

Environmental Physics

Surface forces and the behaviour of colloidal systems

We measure the basic forces that operate between molecules that are manifest at interfaces. These forces control the stability of colloidal systems from blood to toothpaste. We use very sensitive techniques that are able to measure tiny forces with sub nanometer distance resolution. Understanding these forces enables us to predict how a huge variety of colloidal systems will behave.

Professor Vincent Craig

Nanobubbles

Nanobubbles are simply nanosized bubbles. What makes them interesting? Theory tells us they should dissolve in less than a second but they are in some cases stable for days.

Professor Vincent Craig

Materials Science and Engineering

Electrically Injected Bottom-Up Micro-Cavity Lasers

This project aims to demonstrate electrically injected InP/InAsP micro-ring nanolasers grown by selective area epitaxy. By combining atomically smooth, low-loss cavities with scalable on-chip integration, it addresses a key challenge in nanophotonics. The resulting light sources promise transformative applications in telecommunications, sensing, and next-generation photonic integrated circuits.

Dr Wei Wen Wong, Dr Tuomas Haggren, Professor Hoe Tan, Professor Chennupati Jagadish

Nanofluidic diodes: from biosensors to water treatment

Controlling the flow of ions and molecules through nano-sized pores is fundamental in many biological processes and the basis for applications such as DNA detection, water desalination and drug delivery. The project aims to develop solid-state nanofluidic diodes and exploit their properties for applications in bio-sensors and ion-selective channels.

Prof Patrick Kluth

Nano-Scale III-V Light Sources on Si

This project tackles the long-standing challenge of integrating efficient light sources on silicon by enabling direct epitaxy of InP/InAsP nanostructures. By engineering the III-V/Si interface to overcome lattice and polarity mismatch, it aims to unlock scalable, energy-efficient Si photonics critical for AI data centres and next-generation computing infrastructure.

Dr Wei Wen Wong, Professor Hoe Tan, Professor Chennupati Jagadish

Positron Annihilation Spectroscopy

Understanding material defects at the atomic scale using anitmatter.

Dr Joshua Machacek, Professor Stephen Buckman

Wearable III-V nanofilm photodetectors and sensors

Semiconductor nanofilms are just some tens of nanometres thick single-crystalline structures with lateral dimensions in cm-scale. The ultra-low thickness gives these films interesting properties differing from bulk materials, and enables interesting novel device concepts in photodetection and gas sensing.

Dr Tuomas Haggren, Professor Hoe Tan, Professor Chennupati Jagadish

Colloidal systems in highly concentrated salt solutions

We are studying colloidal systems in highly concentrated salt solutions. Here a number of surprising and unexplained things happen that are associated with surprisingly long-ranged electrostatic forces

Professor Vincent Craig

Crystal Phase Engineering for Efficient Green-Emitting LEDs

This project addresses the LED “green gap” problem by engineering GaP and AlInP nanostructures to adopt the hexagonal wurtzite phase, transforming them into direct bandgap semiconductors. Using the crystal structure transfer technique, it aims to achieve efficient green emission, enabling true white RGB displays, advanced lighting, and next-generation microdisplays.

Dr Wei Wen Wong, Professor Hoe Tan, Professor Chennupati Jagadish

Positron interactions with structured surfaces

We are investigating novel effects and applications using positrons and structured surfaces.

Dr Joshua Machacek, Dr Sergey Kruk

Functional nanopore membranes

Nano-pore membranes have important applications in chemical- and bio-sensing, water filtration and protein separation. This project will investigate our innovative technology to fabricate nanopore membranes in silicon dioxide and silicon nitride and exploit their use for advanced applications.

Prof Patrick Kluth

Creating new materials using pressure and diamond anvil cells

New forms of materials can be made using extreme pressures via diamond anvil cells.

Prof Jodie Bradby, Dr Xingshuo Huang

Mathematical making

Explore the geometry and symmetries of surfaces and other mathematical objects and their relevance in physical, chemical and biological contexts. 

Dr Vanessa Robins

Nanoscience and Nanotechnology

Nanofluidic diodes: from biosensors to water treatment

Controlling the flow of ions and molecules through nano-sized pores is fundamental in many biological processes and the basis for applications such as DNA detection, water desalination and drug delivery. The project aims to develop solid-state nanofluidic diodes and exploit their properties for applications in bio-sensors and ion-selective channels.

Prof Patrick Kluth

Surface forces and the behaviour of colloidal systems

We measure the basic forces that operate between molecules that are manifest at interfaces. These forces control the stability of colloidal systems from blood to toothpaste. We use very sensitive techniques that are able to measure tiny forces with sub nanometer distance resolution. Understanding these forces enables us to predict how a huge variety of colloidal systems will behave.

Professor Vincent Craig

Nano-Scale III-V Light Sources on Si

This project tackles the long-standing challenge of integrating efficient light sources on silicon by enabling direct epitaxy of InP/InAsP nanostructures. By engineering the III-V/Si interface to overcome lattice and polarity mismatch, it aims to unlock scalable, energy-efficient Si photonics critical for AI data centres and next-generation computing infrastructure.

Dr Wei Wen Wong, Professor Hoe Tan, Professor Chennupati Jagadish

Specific ion effects

We are seeking students to perform fundamental research into how different ions exert influence in a myriad of systems.

Professor Vincent Craig

Positron Annihilation Spectroscopy

Understanding material defects at the atomic scale using anitmatter.

Dr Joshua Machacek, Professor Stephen Buckman

Wearable III-V nanofilm photodetectors and sensors

Semiconductor nanofilms are just some tens of nanometres thick single-crystalline structures with lateral dimensions in cm-scale. The ultra-low thickness gives these films interesting properties differing from bulk materials, and enables interesting novel device concepts in photodetection and gas sensing.

Dr Tuomas Haggren, Professor Hoe Tan, Professor Chennupati Jagadish

Colloidal systems in highly concentrated salt solutions

We are studying colloidal systems in highly concentrated salt solutions. Here a number of surprising and unexplained things happen that are associated with surprisingly long-ranged electrostatic forces

Professor Vincent Craig

Positron interactions with structured surfaces

We are investigating novel effects and applications using positrons and structured surfaces.

Dr Joshua Machacek, Dr Sergey Kruk

Functional nanopore membranes

Nano-pore membranes have important applications in chemical- and bio-sensing, water filtration and protein separation. This project will investigate our innovative technology to fabricate nanopore membranes in silicon dioxide and silicon nitride and exploit their use for advanced applications.

Prof Patrick Kluth

Solid-state nanopore sensors: Unveiling new frontiers in biomolecule detection

Investigate novel nanopore bio-sensors using nanofabrication, bio-chemsity and machine learning.

Prof Patrick Kluth

Nanowire lasers for applications in nanophotonics

This project aims to investigate the concepts and strategies required to produce electrically injected semiconductor nanowire lasers by understanding light interaction in nanowires, designing appropriate structures to inject current, engineer the optical profile and developing nano-fabrication technologies. Electrically operated nanowire lasers would enable practical applications in nanophotonics.

Professor Chennupati Jagadish, Professor Hoe Tan

Bottom-Up Nanolasers for Next-Generation Integrated Nanophotonics

This project develops bottom-up, epitaxially-grown nanolaser cavities with atomically smooth facets that overcome scattering losses in top-down fabricated devices. By exploring advanced cavity concepts—including flatband and topological nanolasers—it aims to deliver robust, scalable, and low-threshold light sources, redefining nanolaser technology for next-generation integrated photonic systems.

Dr Wei Wen Wong, Professor Hoe Tan, Professor Chennupati Jagadish

Nanobubbles

Nanobubbles are simply nanosized bubbles. What makes them interesting? Theory tells us they should dissolve in less than a second but they are in some cases stable for days.

Professor Vincent Craig

Creating new materials using pressure and diamond anvil cells

New forms of materials can be made using extreme pressures via diamond anvil cells.

Prof Jodie Bradby, Dr Xingshuo Huang

Photonics, Lasers and Nonlinear Optics

Electrically Injected Bottom-Up Micro-Cavity Lasers

This project aims to demonstrate electrically injected InP/InAsP micro-ring nanolasers grown by selective area epitaxy. By combining atomically smooth, low-loss cavities with scalable on-chip integration, it addresses a key challenge in nanophotonics. The resulting light sources promise transformative applications in telecommunications, sensing, and next-generation photonic integrated circuits.

Dr Wei Wen Wong, Dr Tuomas Haggren, Professor Hoe Tan, Professor Chennupati Jagadish

Harnessing non-classical correlations of exciton-polariton condensates

This project aims to experimentally probe and manipulate the non-classical properties of exciton polariton condensates, which will pave the way for tunable generation of quantum light on a semiconductor chip.

Dr Eliezer Estrecho, Prof Elena Ostrovskaya, Professor Andrew Truscott

Crystal Phase Engineering for Efficient Green-Emitting LEDs

This project addresses the LED “green gap” problem by engineering GaP and AlInP nanostructures to adopt the hexagonal wurtzite phase, transforming them into direct bandgap semiconductors. Using the crystal structure transfer technique, it aims to achieve efficient green emission, enabling true white RGB displays, advanced lighting, and next-generation microdisplays.

Dr Wei Wen Wong, Professor Hoe Tan, Professor Chennupati Jagadish

Positron interactions with structured surfaces

We are investigating novel effects and applications using positrons and structured surfaces.

Dr Joshua Machacek, Dr Sergey Kruk

Nanowire lasers for applications in nanophotonics

This project aims to investigate the concepts and strategies required to produce electrically injected semiconductor nanowire lasers by understanding light interaction in nanowires, designing appropriate structures to inject current, engineer the optical profile and developing nano-fabrication technologies. Electrically operated nanowire lasers would enable practical applications in nanophotonics.

Professor Chennupati Jagadish, Professor Hoe Tan

Bottom-Up Nanolasers for Next-Generation Integrated Nanophotonics

This project develops bottom-up, epitaxially-grown nanolaser cavities with atomically smooth facets that overcome scattering losses in top-down fabricated devices. By exploring advanced cavity concepts—including flatband and topological nanolasers—it aims to deliver robust, scalable, and low-threshold light sources, redefining nanolaser technology for next-generation integrated photonic systems.

Dr Wei Wen Wong, Professor Hoe Tan, Professor Chennupati Jagadish

Machine learning for optics and controls

Optical cavities are widely used in physics and precision measurement.  This project will explore the use of modern machine learning methods for the control of suspended optical cavities.

A/Prof Bram Slagmolen, Dr Jiayi Qin, Professor Robert Ward

Femtosecond laser cleaning of Aboriginal rock art

This project develops safe, damage-free laser cleaning for Australian Indigenous rock art and historic stone monuments, removing contaminants without altering surfaces. Using ultrashort pulse lasers at multiple wavelengths, it combines laboratory optimization and field-applicable procedures, in collaboration with heritage partners and Indigenous custodians, to restore and preserve culturally and visually significant sites.

Dr Ludovic Rapp, Dr Ksenia Maximova

Physics of the Nucleus

Simulating cosmic-ray interactions with materials for dark matter and commercial applications

This project uses Geant4 simulations to investigate how naturally occurring cosmic rays interact with materials relevant to physics and environmental research, including NaI(Tl) crystals, gaseous detectors, and soil.

Dr Yiyi Zhong, Dr Lindsey Bignell

Advanced detector development for rare event particle physics

Experimental, simulation, and data analysis projects are available to help develop advanced detection technology which will form the basis of a future large particle physics experiment in Australia

Dr Lindsey Bignell, Dr Robert Renz Marcelo Gregorio, Miss Victoria Bashu, Professor Gregory Lane

Quantum Science and Technology

Beam matching using machine learning

This project aims to use a machine learning algorithm to perform beam alignment in an optics experiment. It would involve mode-matching two optical beams using motorised mirror mounts. Additional degrees of freedom like lens positions and beam polarisation can be added later.

Dr Aaron Tranter

Harnessing non-classical correlations of exciton-polariton condensates

This project aims to experimentally probe and manipulate the non-classical properties of exciton polariton condensates, which will pave the way for tunable generation of quantum light on a semiconductor chip.

Dr Eliezer Estrecho, Prof Elena Ostrovskaya, Professor Andrew Truscott

Interactions between antimatter and ultracold atoms

Antiparticles and antimatter have progressed from theory and science fiction to become an important and exciting area of pure and applied science. This fundamental atomic physics project will investigate how antimatter and matter interact by experimentally studying the interaction of positrons (the electron anti-particle) with trapped ultracold rubidium atoms.

Dr Sean Hodgman, Professor Stephen Buckman, Dr Joshua Machacek

Femtosecond laser cleaning of Aboriginal rock art

This project develops safe, damage-free laser cleaning for Australian Indigenous rock art and historic stone monuments, removing contaminants without altering surfaces. Using ultrashort pulse lasers at multiple wavelengths, it combines laboratory optimization and field-applicable procedures, in collaboration with heritage partners and Indigenous custodians, to restore and preserve culturally and visually significant sites.

Dr Ludovic Rapp, Dr Ksenia Maximova

Theoretical Physics

Mathematical making

Explore the geometry and symmetries of surfaces and other mathematical objects and their relevance in physical, chemical and biological contexts. 

Dr Vanessa Robins