Potential student research projects

The Research School of Physics performs research at the cutting edge of a wide range of disciplines.

By undertaking your own research project at ANU you could open up an exciting career in science.

Filter projects

Some other physics related research projects may be found at the ANU College of Engineering & Computer Science, the Mathematical Sciences Institute and the Research School of Astronomy & Astrophysics

Clean Energy

Flexible, Cost-effective III-V Semiconductor-Perovskite Tandem Solar Cells

This project aims to develop high efficiency, cost-effective III-V semiconductor-perovskite tandem solar cells which are flexible and lightweight, while achieving excellent device stability.

Professor Hoe Tan, Dr Tuomas Haggren, Professor Chennupati Jagadish

Engineering in Physics

Developing ultra-high resolution optical meta-surface sensors

The project aims to develop methods to improve the sensitivity of optical metasurfaces for the detection of chemical and biological markers. By tailoring a high-precision optical interferometric sensing solution to the optical properties of a metasurface under-test, the project will improve the sensitivity of these devices, developing a new range of targeted ultra-precise metasurface sensors.

Dr Chathura Bandutunga , Prof Dragomir Neshev

Materials Science and Engineering

Flexible, Cost-effective III-V Semiconductor-Perovskite Tandem Solar Cells

This project aims to develop high efficiency, cost-effective III-V semiconductor-perovskite tandem solar cells which are flexible and lightweight, while achieving excellent device stability.

Professor Hoe Tan, Dr Tuomas Haggren, Professor Chennupati Jagadish

Bottom-up, parity-time (PT) symmetric micro-cavity lasers

In this project, we aim to explore PT-symmetric lasing in III-V semiconductor micro-cavity lasers that are epitaxially grown on their substrates, free from any etching-induced damage. In particular, we aim to demonstrate performance improvements by exploiting some of the unique features of bottom-up grown laser cavities.

Dr Wei Wen Wong, Professor Hoe Tan, Professor Chennupati Jagadish

Nanowire photodetectors for photonic and quantum systems

Semiconductor nanowires are emerging nano-materials with substantial opportunities for novel photonic and quantum device applications. This project aims at developing a new generation of high performance NW based photodetectors for a wide range of applications.

Professor Lan Fu, Dr Ziyuan Li, Professor Hoe Tan

Flexible GaN-based UV photodetectors

Flexible GaN for applications in wearable and flexible electronics.

Dr Sonachand Adhikari, Professor Hoe Tan, Professor Chennupati Jagadish

Wearable III-V nanofilm photodetectors and sensors

Semiconductor nanofilms are just some tens of nanometres thick single-crystalline structures with lateral dimensions in cm-scale. The ultra-low thickness gives these films interesting properties differing from bulk materials, and enables interesting novel device concepts in photodetection and gas sensing.

Dr Tuomas Haggren, Professor Hoe Tan, Professor Chennupati Jagadish

Bottom-up, quasi-bound states in the continuum (quasi-BIC) metasurface lasers

This project aims to demonstrate lasing in a bottom-up metasurface supporting a perturbed symmetry-protected quasi-BIC mode, while exploring its unique optical properties. We will also develop fabrication processes to achieve electrically injected lasing, highlighting the advantages of bottom-up metasurface design over conventional top-down laser fabrication approaches.

Dr Wei Wen Wong, Professor Hoe Tan, Professor Chennupati Jagadish

Nano-scale III-V light emitters on Si

Although planar growth of III-V materials on Si has been widely demonstrated, direct growth of III-V nanostructures on Si remains challenging. This project aims to realize InP/InAsP light-emitting nanostructures on Si substrates by engineering the III-V/Si interfacial energy, enabling monolithic integration of active photonic components on silicon.

Dr Wei Wen Wong, Professor Hoe Tan, Professor Chennupati Jagadish

Electrically-injected bottom-up III-V micro-cavity lasers

Bottom-up fabrication of lasers via epitaxial growth is emerging as a promising alternative to conventional top-down methods, offering potential to realize micro-lasers with ultra-low optical losses. In this project, we aim to demonstrate electrically injected lasing in InP/InAsP multi-quantum well micro-ring cavities, grown using the selective area epitaxy technique.

Dr Wei Wen Wong, Dr Tuomas Haggren, Professor Hoe Tan, Professor Chennupati Jagadish

Nanoscience and Nanotechnology

Electrically injected metasurface lasers

Metasurfaces have emerged as a cornerstone for next-generation optics and optoelectronics. This project aims to create metasurface lasers from III-V semiconductor thin-films, that are additionally pumped electrically.  

Dr Tuomas Haggren, Professor Hoe Tan, Professor Chennupati Jagadish

Nanowire lasers for applications in nanophotonics

This project aims to investigate the concepts and strategies required to produce electrically injected semiconductor nanowire lasers by understanding light interaction in nanowires, designing appropriate structures to inject current, engineer the optical profile and developing nano-fabrication technologies. Electrically operated nanowire lasers would enable practical applications in nanophotonics.

Professor Chennupati Jagadish, Professor Hoe Tan

Wearable III-V nanofilm photodetectors and sensors

Semiconductor nanofilms are just some tens of nanometres thick single-crystalline structures with lateral dimensions in cm-scale. The ultra-low thickness gives these films interesting properties differing from bulk materials, and enables interesting novel device concepts in photodetection and gas sensing.

Dr Tuomas Haggren, Professor Hoe Tan, Professor Chennupati Jagadish

Directional metasurface lasers based on coupled nanowire pairs

We demonstrate directional emission from III-V nanowire lasers by engineering waveguide modes in optically coupled nanowire pairs. Arrays of such pairs enhance far-field directionality via non-local resonance, highlighting the potential of metasurface lasers as compact, coherent light sources for applications such as LiDAR and beam steering.

Dr Wei Wen Wong, Professor Hoe Tan, Professor Chennupati Jagadish

Nanowire photonic crystal surface-emitting lasers

In this project, we aim to demonstrate photonic crystal surface-emitting lasers (PCSELs) constructed from vertically-standing III-V semiconductor nanowires as the fundamental building blocks. We will also explore more advanced nanowire-based PCSEL designs, including hetero-lattice PCSELs with enhanced in-plane optical feedback and topological PCSELs.

Dr Wei Wen Wong, Professor Hoe Tan, Professor Chennupati Jagadish

Optical metamaterials: from science fiction to transformative optical technologies

Experimental and theoretical work on the development of novel nanostructured materials with unusual optical properties. Special attention to our research is the development of tunable and functional nanostructured metamaterials that interact strongly with light. Such materials underpin novel optical technologies ranging from wearable sensors to night-vision devices.

Prof Dragomir Neshev, Dr Andrei Komar, Dr Mohsen Rahmani

Nanowire infrared avalanche photodetectors towards single photon detection

This project aims to demonstrate semiconductor nanowire based infrared avalanche photodetectors (APDs) with ultra-high sensitivity towards single photon detection. By employing the advantages of their unique one-dimensional nanoscale geometry, the nanowire APDs can be engineered to different device architectures to achieve performance superior to their conventional counterparts. This will contribute to the development of next generation infrared photodetector technology enabling numerous emerging fields in modern transportation, communication, quantum computation and information processing.

Professor Lan Fu, Dr Zhe (Rex) Li, Professor Chennupati Jagadish

Quantum-well nanowire light emitting devices

In this project we aim to design and demonstrate  III-V compound semiconductor based quantum well nanowire light emitting devices with wavelength ranging from 1.3 to 1.6 μm for optical communication applications.

Professor Lan Fu, Dr Ziyuan Li, Professor Hoe Tan, Professor Chennupati Jagadish

Photonics, Lasers and Nonlinear Optics

Synthetic multi-dimensional photonics

This project goal is to investigate, theoretically and experimentally, photonic systems with synthetic dimensionality exceeding the three spatial dimensions, and reveal new opportunities for applications in optical signal switching and sensing in classical and quantum photonics.

Prof Andrey Sukhorukov, Dr Jihua Zhang

Developing ultra-high resolution optical meta-surface sensors

The project aims to develop methods to improve the sensitivity of optical metasurfaces for the detection of chemical and biological markers. By tailoring a high-precision optical interferometric sensing solution to the optical properties of a metasurface under-test, the project will improve the sensitivity of these devices, developing a new range of targeted ultra-precise metasurface sensors.

Dr Chathura Bandutunga , Prof Dragomir Neshev

Bottom-up, parity-time (PT) symmetric micro-cavity lasers

In this project, we aim to explore PT-symmetric lasing in III-V semiconductor micro-cavity lasers that are epitaxially grown on their substrates, free from any etching-induced damage. In particular, we aim to demonstrate performance improvements by exploiting some of the unique features of bottom-up grown laser cavities.

Dr Wei Wen Wong, Professor Hoe Tan, Professor Chennupati Jagadish

Nanowire photodetectors for photonic and quantum systems

Semiconductor nanowires are emerging nano-materials with substantial opportunities for novel photonic and quantum device applications. This project aims at developing a new generation of high performance NW based photodetectors for a wide range of applications.

Professor Lan Fu, Dr Ziyuan Li, Professor Hoe Tan

Electrically injected metasurface lasers

Metasurfaces have emerged as a cornerstone for next-generation optics and optoelectronics. This project aims to create metasurface lasers from III-V semiconductor thin-films, that are additionally pumped electrically.  

Dr Tuomas Haggren, Professor Hoe Tan, Professor Chennupati Jagadish

Nanowire lasers for applications in nanophotonics

This project aims to investigate the concepts and strategies required to produce electrically injected semiconductor nanowire lasers by understanding light interaction in nanowires, designing appropriate structures to inject current, engineer the optical profile and developing nano-fabrication technologies. Electrically operated nanowire lasers would enable practical applications in nanophotonics.

Professor Chennupati Jagadish, Professor Hoe Tan

Directional metasurface lasers based on coupled nanowire pairs

We demonstrate directional emission from III-V nanowire lasers by engineering waveguide modes in optically coupled nanowire pairs. Arrays of such pairs enhance far-field directionality via non-local resonance, highlighting the potential of metasurface lasers as compact, coherent light sources for applications such as LiDAR and beam steering.

Dr Wei Wen Wong, Professor Hoe Tan, Professor Chennupati Jagadish

Bottom-up, quasi-bound states in the continuum (quasi-BIC) metasurface lasers

This project aims to demonstrate lasing in a bottom-up metasurface supporting a perturbed symmetry-protected quasi-BIC mode, while exploring its unique optical properties. We will also develop fabrication processes to achieve electrically injected lasing, highlighting the advantages of bottom-up metasurface design over conventional top-down laser fabrication approaches.

Dr Wei Wen Wong, Professor Hoe Tan, Professor Chennupati Jagadish

Quantum photonics with nanostructured metasurfaces

Metasurface can the generation and manipulation of polarization-entangled photon pairs at the nanoscale.

Dr Jinyong Ma, Prof Andrey Sukhorukov, Dr Jihua Zhang

Nanowire photonic crystal surface-emitting lasers

In this project, we aim to demonstrate photonic crystal surface-emitting lasers (PCSELs) constructed from vertically-standing III-V semiconductor nanowires as the fundamental building blocks. We will also explore more advanced nanowire-based PCSEL designs, including hetero-lattice PCSELs with enhanced in-plane optical feedback and topological PCSELs.

Dr Wei Wen Wong, Professor Hoe Tan, Professor Chennupati Jagadish

Optical metamaterials: from science fiction to transformative optical technologies

Experimental and theoretical work on the development of novel nanostructured materials with unusual optical properties. Special attention to our research is the development of tunable and functional nanostructured metamaterials that interact strongly with light. Such materials underpin novel optical technologies ranging from wearable sensors to night-vision devices.

Prof Dragomir Neshev, Dr Andrei Komar, Dr Mohsen Rahmani

Nano-scale III-V light emitters on Si

Although planar growth of III-V materials on Si has been widely demonstrated, direct growth of III-V nanostructures on Si remains challenging. This project aims to realize InP/InAsP light-emitting nanostructures on Si substrates by engineering the III-V/Si interfacial energy, enabling monolithic integration of active photonic components on silicon.

Dr Wei Wen Wong, Professor Hoe Tan, Professor Chennupati Jagadish

Optical nanoantennas

Antennas are at the heart of modern radio and microwave frequency communications technologies. They are the front-ends in satellites, cell-phones, laptops and other devices that make communication by sending and receiving radio waves. This project aims to design analog of optical nanoantennas for visible light for advanced optical communiction. 

Prof Dragomir Neshev, Prof Andrey Miroshnichenko

Electrically-injected bottom-up III-V micro-cavity lasers

Bottom-up fabrication of lasers via epitaxial growth is emerging as a promising alternative to conventional top-down methods, offering potential to realize micro-lasers with ultra-low optical losses. In this project, we aim to demonstrate electrically injected lasing in InP/InAsP multi-quantum well micro-ring cavities, grown using the selective area epitaxy technique.

Dr Wei Wen Wong, Dr Tuomas Haggren, Professor Hoe Tan, Professor Chennupati Jagadish

Nanowire infrared avalanche photodetectors towards single photon detection

This project aims to demonstrate semiconductor nanowire based infrared avalanche photodetectors (APDs) with ultra-high sensitivity towards single photon detection. By employing the advantages of their unique one-dimensional nanoscale geometry, the nanowire APDs can be engineered to different device architectures to achieve performance superior to their conventional counterparts. This will contribute to the development of next generation infrared photodetector technology enabling numerous emerging fields in modern transportation, communication, quantum computation and information processing.

Professor Lan Fu, Dr Zhe (Rex) Li, Professor Chennupati Jagadish

Quantum-well nanowire light emitting devices

In this project we aim to design and demonstrate  III-V compound semiconductor based quantum well nanowire light emitting devices with wavelength ranging from 1.3 to 1.6 μm for optical communication applications.

Professor Lan Fu, Dr Ziyuan Li, Professor Hoe Tan, Professor Chennupati Jagadish

Integrated quantum photonics

The goal of the project is to understand new physical phenomena arising from quantum and nonlinear optical integration. In the future this research may open doors to new types of computers and simulators with information capacity exceeding the number of elementary particles in the entire universe.

Prof Andrey Sukhorukov, Dr Jinyong Ma, Dr Jihua Zhang, Prof Dragomir Neshev

Quantum Science and Technology

Synthetic multi-dimensional photonics

This project goal is to investigate, theoretically and experimentally, photonic systems with synthetic dimensionality exceeding the three spatial dimensions, and reveal new opportunities for applications in optical signal switching and sensing in classical and quantum photonics.

Prof Andrey Sukhorukov, Dr Jihua Zhang

Quantum photonics with nanostructured metasurfaces

Metasurface can the generation and manipulation of polarization-entangled photon pairs at the nanoscale.

Dr Jinyong Ma, Prof Andrey Sukhorukov, Dr Jihua Zhang

Integrated quantum photonics

The goal of the project is to understand new physical phenomena arising from quantum and nonlinear optical integration. In the future this research may open doors to new types of computers and simulators with information capacity exceeding the number of elementary particles in the entire universe.

Prof Andrey Sukhorukov, Dr Jinyong Ma, Dr Jihua Zhang, Prof Dragomir Neshev

Theoretical Physics

Optical nanoantennas

Antennas are at the heart of modern radio and microwave frequency communications technologies. They are the front-ends in satellites, cell-phones, laptops and other devices that make communication by sending and receiving radio waves. This project aims to design analog of optical nanoantennas for visible light for advanced optical communiction. 

Prof Dragomir Neshev, Prof Andrey Miroshnichenko