Potential student research projects

The Research School of Physics performs research at the cutting edge of a wide range of disciplines.

By undertaking your own research project at ANU you could open up an exciting career in science.

Filter projects

Some other physics related research projects may be found at the ANU College of Engineering & Computer Science, the Mathematical Sciences Institute and the Research School of Astronomy & Astrophysics

Atomic and Molecular Physics

Measuring and modelling free-ion hyperfine fields

Motivated by exciting prospects for measurements of the magnetism of rare isotopes produced by the new radioactive beam accelerators internationally, this experimental and computational project seeks to understand the enormous magnetic fields produced at the nucleus of highly charged ions by their atomic electron configuration.

Professor Andrew Stuchbery, Emeritus Professor Tibor Kibedi, Dr Brendan McCormick

Biophysics

Specific ion effects

We are seeking students to perform fundamental research into how different ions exert influence in a myriad of systems.

Professor Vincent Craig

Understanding drought-resistance in Australian plants with 3D X-ray microscopy

This project will use unique, ANU-designed 3D X-ray microscopes and state-of-the art image analysis to track physiological responses of drought-tolerant Australian plants when subjected to water stress. The results will help us understand the mechanisms that underpin drought-tolerance, helping resolve ongoing debates and helping understand which forest eco-systems that are most vulnerable to climate change, and why.

Prof Adrian Sheppard, Dr Levi Beeching, Dr Andrew Kingston

Solid-state nanopore sensors: Unveiling New Frontiers in Biomolecule Detection

Investigate novel nanopore bio-sensors using nanofabrication, bio-chemsity and machine learning.

Prof Patrick Kluth

Clean Energy

Migration of carbon dioxide injected in aquifers: convection, diffusion and dissolution

Underground carbon sequestration looks to be essential if the world is to keep global warming below 2oC.  This project will explore the physics underlying migration of injected carbon dioxide, to better understand when it will dissolve and sink to the deep earth before there is any chance of it migrating upwards.

Prof Adrian Sheppard, Professor Vincent Craig

Creation of novel hybrid boron nitride materials

This project focussed on the creation of novel hybrid boron nitride materials by utilizing advanced green techniques of mechanochemistry and high-pressure methods. 

Prof Jodie Bradby

Creating new materials using pressure and diamond anvil cells

New forms of materials can be made using extreme pressures via diamond anvil cells.

Prof Jodie Bradby, Dr Xingshuo Huang

Engineering in Physics

High pressure creation of new forms of diamond

The hexagonal form of sp3 bonded carbon is predicted to be harder than 'normal' cubic diamond. We can make tiny amounts of this new form of diamond and want to know if it really is harder than diamond.

Prof Jodie Bradby, Dr Xingshuo Huang

Miniature absolute gravimeter for long-term gravity surveys

Absolute gravimeters tie their measurement of gravity to the definition of the second 
by interrogating the position of a falling test mass using a laser interferometer. Our vision is to develop and prototype a miniaturised absolute gravimeter by 
leveraging modern vacuum, laser, and micro-electromechanical systems.

Dr Samuel Legge, Professor John Close, Prof Patrick Kluth, Dr Giovanni Guccione

Creation of novel hybrid boron nitride materials

This project focussed on the creation of novel hybrid boron nitride materials by utilizing advanced green techniques of mechanochemistry and high-pressure methods. 

Prof Jodie Bradby

Creating new materials using pressure and diamond anvil cells

New forms of materials can be made using extreme pressures via diamond anvil cells.

Prof Jodie Bradby, Dr Xingshuo Huang

Environmental Physics

Migration of carbon dioxide injected in aquifers: convection, diffusion and dissolution

Underground carbon sequestration looks to be essential if the world is to keep global warming below 2oC.  This project will explore the physics underlying migration of injected carbon dioxide, to better understand when it will dissolve and sink to the deep earth before there is any chance of it migrating upwards.

Prof Adrian Sheppard, Professor Vincent Craig

Nanobubbles

Nanobubbles are simply nanosized bubbles. What makes them interesting? Theory tells us they should dissolve in less than a second but they are in some cases stable for days.

Professor Vincent Craig

High pressure non-equilibrium plasma discharges in chemically reactive systems

The goal of this research is to study high pressure non-equilibrium plasma discharges in chemically reactive systems with applications to space, waste treatment and material science.

A/Prof Cormac Corr

Surface forces and the behaviour of colloidal systems

We measure the basic forces that operate between molecules that are manifest at interfaces. These forces control the stability of colloidal systems from blood to toothpaste. We use very sensitive techniques that are able to measure tiny forces with sub nanometer distance resolution. Understanding these forces enables us to predict how a huge variety of colloidal systems will behave.

Professor Vincent Craig

Fusion and Plasma Confinement

Diagnosing plasma-surface interactions under fusion-relevant conditions

This project involves studying the complex plasma-surface interaction region of a fusion-relevant plasma environment through laser-based and spectroscopic techniques.

A/Prof Cormac Corr, Dr Matt Thompson

Nano-bubble formation in fusion relevant materials

Fusion energy promises millions of years of clean energy, but puts extreme stress on materials. This research will resolve scientific issues surrounding plasma-material interactions to guide and facilitate development of future advanced materials for fusion reactors.

A/Prof Cormac Corr, Prof Patrick Kluth, Dr Matt Thompson

The effect of He irradiation on the microstructure and mechanical properties of W/ W alloys

Nuclear fusion is a promising technology for solving the world’s energy crisis while drastically reducing pollution and avoiding the creation of nuclear waste, a major issue for nuclear fission. However, there are many scientific and technical challenges to be overcome before this technology can be used for large-scale energy generation. One of the problems that need to be solved is the tolerance of the diverter walls to the high temperatures and He implantation – conditions that are prevalent inside the fusion reactors.

A/Prof Cormac Corr, Dr Matt Thompson

Materials Science and Engineering

GeSn defect properties measured by nanoindentation

To understand defects in metal-semiconductor alloys, specifically GeSn in this project, to help making better alloy films and devices.

Dr Xingshuo Huang, Prof Jodie Bradby, Emeritus Professor Jim Williams

High pressure creation of new forms of diamond

The hexagonal form of sp3 bonded carbon is predicted to be harder than 'normal' cubic diamond. We can make tiny amounts of this new form of diamond and want to know if it really is harder than diamond.

Prof Jodie Bradby, Dr Xingshuo Huang

Diagnosing plasma-surface interactions under fusion-relevant conditions

This project involves studying the complex plasma-surface interaction region of a fusion-relevant plasma environment through laser-based and spectroscopic techniques.

A/Prof Cormac Corr, Dr Matt Thompson

Deblur by defocus in a 3D X-ray microscope

This project will involve building a unified model of several theoretically-complex X-ray behaviours within the microscopes at the ANU CTLab, drawing from statistical and wave optics: spatial partial-coherence, refraction, and spectral interactions. The student will then apply this model to improve imaging capabilities at the ANU CTLab.

Dr Glenn Myers, Dr Andrew Kingston

Nano-bubble formation in fusion relevant materials

Fusion energy promises millions of years of clean energy, but puts extreme stress on materials. This research will resolve scientific issues surrounding plasma-material interactions to guide and facilitate development of future advanced materials for fusion reactors.

A/Prof Cormac Corr, Prof Patrick Kluth, Dr Matt Thompson

Nanofluidic diodes: from biosensors to water treatment

Controlling the flow of ions and molecules through nano-sized pores is fundamental in many biological processes and the basis for applications such as DNA detection, water desalination and drug delivery. The project aims to develop solid-state nanofluidic diodes and exploit their properties for applications in bio-sensors and ion-selective channels.

Prof Patrick Kluth

Making diamond from disordered forms of carbon

We have shown that glassy carbon is a fascinating material which has different properties depending on thow it was formed. The effect on how order and impurities influences the new phases formed under pressure is not understood.

Prof Jodie Bradby, Dr Xingshuo Huang

Colloidal systems in highly concentrated salt solutions

We are studying colloidal systems in highly concentrated salt solutions. Here a number of surprising and unexplained things happen that are associated with surprisingly long-ranged electrostatic forces

Professor Vincent Craig

Functional nanopore membranes

Nano-pore membranes have important applications in chemical- and bio-sensing, water filtration and protein separation. This project will investigate our innovative technology to fabricate nanopore membranes in silicon dioxide and silicon nitride and exploit their use for advanced applications.

Prof Patrick Kluth

Creation of novel hybrid boron nitride materials

This project focussed on the creation of novel hybrid boron nitride materials by utilizing advanced green techniques of mechanochemistry and high-pressure methods. 

Prof Jodie Bradby

Solving the problem of how to measure a material harder than diamond

In experiments, measuring the hardness of a very hard material is fundamentally challenging. We aim to study the physical mechanics behind nanoindentation measurements to help better measure superhard materials.

Dr Xingshuo Huang, Prof Jodie Bradby

The effect of He irradiation on the microstructure and mechanical properties of W/ W alloys

Nuclear fusion is a promising technology for solving the world’s energy crisis while drastically reducing pollution and avoiding the creation of nuclear waste, a major issue for nuclear fission. However, there are many scientific and technical challenges to be overcome before this technology can be used for large-scale energy generation. One of the problems that need to be solved is the tolerance of the diverter walls to the high temperatures and He implantation – conditions that are prevalent inside the fusion reactors.

A/Prof Cormac Corr, Dr Matt Thompson

Creating new materials using pressure and diamond anvil cells

New forms of materials can be made using extreme pressures via diamond anvil cells.

Prof Jodie Bradby, Dr Xingshuo Huang

X-ray scatter in 3D microscopes

X-ray scatter is most significant when imaging very dense/large samples: e.g. metal parts, large 3D printed components, or samples imaged on the CTLab's new "whole core" scanner. The student will develop methods to correct for its effects, both in-hardware (i.e. at the microscope) and in-software (i.e. image analysis).

Dr Andrew Kingston, Dr Glenn Myers, Prof Adrian Sheppard

Nanoscience and Nanotechnology

Specific ion effects

We are seeking students to perform fundamental research into how different ions exert influence in a myriad of systems.

Professor Vincent Craig

High pressure creation of new forms of diamond

The hexagonal form of sp3 bonded carbon is predicted to be harder than 'normal' cubic diamond. We can make tiny amounts of this new form of diamond and want to know if it really is harder than diamond.

Prof Jodie Bradby, Dr Xingshuo Huang

Nanofluidic diodes: from biosensors to water treatment

Controlling the flow of ions and molecules through nano-sized pores is fundamental in many biological processes and the basis for applications such as DNA detection, water desalination and drug delivery. The project aims to develop solid-state nanofluidic diodes and exploit their properties for applications in bio-sensors and ion-selective channels.

Prof Patrick Kluth

Nanobubbles

Nanobubbles are simply nanosized bubbles. What makes them interesting? Theory tells us they should dissolve in less than a second but they are in some cases stable for days.

Professor Vincent Craig

Surface forces and the behaviour of colloidal systems

We measure the basic forces that operate between molecules that are manifest at interfaces. These forces control the stability of colloidal systems from blood to toothpaste. We use very sensitive techniques that are able to measure tiny forces with sub nanometer distance resolution. Understanding these forces enables us to predict how a huge variety of colloidal systems will behave.

Professor Vincent Craig

Colloidal systems in highly concentrated salt solutions

We are studying colloidal systems in highly concentrated salt solutions. Here a number of surprising and unexplained things happen that are associated with surprisingly long-ranged electrostatic forces

Professor Vincent Craig

Functional nanopore membranes

Nano-pore membranes have important applications in chemical- and bio-sensing, water filtration and protein separation. This project will investigate our innovative technology to fabricate nanopore membranes in silicon dioxide and silicon nitride and exploit their use for advanced applications.

Prof Patrick Kluth

Solid-state nanopore sensors: Unveiling New Frontiers in Biomolecule Detection

Investigate novel nanopore bio-sensors using nanofabrication, bio-chemsity and machine learning.

Prof Patrick Kluth

Creating new materials using pressure and diamond anvil cells

New forms of materials can be made using extreme pressures via diamond anvil cells.

Prof Jodie Bradby, Dr Xingshuo Huang

Physics of Fluids

Understanding drought-resistance in Australian plants with 3D X-ray microscopy

This project will use unique, ANU-designed 3D X-ray microscopes and state-of-the art image analysis to track physiological responses of drought-tolerant Australian plants when subjected to water stress. The results will help us understand the mechanisms that underpin drought-tolerance, helping resolve ongoing debates and helping understand which forest eco-systems that are most vulnerable to climate change, and why.

Prof Adrian Sheppard, Dr Levi Beeching, Dr Andrew Kingston

Physics of the Nucleus

Measuring and modelling free-ion hyperfine fields

Motivated by exciting prospects for measurements of the magnetism of rare isotopes produced by the new radioactive beam accelerators internationally, this experimental and computational project seeks to understand the enormous magnetic fields produced at the nucleus of highly charged ions by their atomic electron configuration.

Professor Andrew Stuchbery, Emeritus Professor Tibor Kibedi, Dr Brendan McCormick

Nuclear magnetism - magnetic moment measurements

This project builds on our established track record of developing novel methods to measure magnetic moments of picosecond-lived excited states in atomic nuclei, and the theoretical interpretation of those measurements. Students will help establish new methodologies to underpin future international research at the world's leading radioactive beam laboratories.

Professor Andrew Stuchbery, Emeritus Professor Tibor Kibedi, Professor Gregory Lane, Dr Brendan McCormick

Plasma Applications and Technology

High pressure non-equilibrium plasma discharges in chemically reactive systems

The goal of this research is to study high pressure non-equilibrium plasma discharges in chemically reactive systems with applications to space, waste treatment and material science.

A/Prof Cormac Corr

Quantum Science and Technology

Miniature absolute gravimeter for long-term gravity surveys

Absolute gravimeters tie their measurement of gravity to the definition of the second 
by interrogating the position of a falling test mass using a laser interferometer. Our vision is to develop and prototype a miniaturised absolute gravimeter by 
leveraging modern vacuum, laser, and micro-electromechanical systems.

Dr Samuel Legge, Professor John Close, Prof Patrick Kluth, Dr Giovanni Guccione

Theoretical Physics

Nuclear magnetism - magnetic moment measurements

This project builds on our established track record of developing novel methods to measure magnetic moments of picosecond-lived excited states in atomic nuclei, and the theoretical interpretation of those measurements. Students will help establish new methodologies to underpin future international research at the world's leading radioactive beam laboratories.

Professor Andrew Stuchbery, Emeritus Professor Tibor Kibedi, Professor Gregory Lane, Dr Brendan McCormick