Professor Hoe Tan

Tan, Hoe profile
Position Professor
Department Electronic Materials Engineering
Research group Semiconductor optoelectronics and nanotechnology group
Qualifications BE (Melb.), PhD (ANU)
Office phone (02) 612 50356
Email
Office Physics New 3 12

Wearable III-V nanofilm photodetectors and sensors

Semiconductor nanofilms are just some tens of nanometres thick single-crystalline structures with lateral dimensions in cm-scale. The ultra-low thickness gives these films interesting properties differing from bulk materials, and enables interesting novel device concepts in photodetection and gas sensing.

Dr Tuomas Haggren, Professor Hoe Tan, Professor Chennupati Jagadish

Nano-scale III-V light emitters on Si

While there have been numerous demonstrations of planar growth of III-V materials on Si substrates, growing III-V nanostructures directly on Si is not a trivial task. In this project, we aim to demonstrate the direct growth of InP/InAsP light-emitting nanostructures on Si substrates by engineering the III-V/Si interfacial energy. 

Dr Wei Wen Wong, Professor Hoe Tan

Flexible GaN-based UV photodetectors

Flexible GaN for applications in wearable and flexible electronics.

Dr Sonachand Adhikari, Professor Hoe Tan, Professor Chennupati Jagadish

Flexible, Cost-effective III-V Semiconductor-Perovskite Tandem Solar Cells

This project aims to develop high efficiency, cost-effective III-V semiconductor-perovskite tandem solar cells which are flexible and lightweight, while achieving excellent device stability.

Professor Hoe Tan, Dr Tuomas Haggren, Professor Chennupati Jagadish

Nanowire photodetectors for photonic and quantum systems

Semiconductor nanowires are emerging nano-materials with substantial opportunities for novel photonic and quantum device applications. This project aims at developing a new generation of high performance NW based photodetectors for a wide range of applications.

Professor Lan Fu, Dr Ziyuan Li, Professor Hoe Tan

Bottom-up, parity-time (PT) symmetric micro-cavity lasers

In this project, we aim to explore PT-symmetric lasing in III-V semiconductor micro-cavity lasers that are epitaxially grown on their substrates, free from any etching-induced damage. In particular, we aim to demonstrate performance improvements by exploiting some of the unique features of bottom-up grown laser cavities.

Dr Wei Wen Wong, Professor Hoe Tan

Shape engineering of semiconductor nanostructures for novel device applications

This project aims to investigate the growth of III-V semiconductors on pre-patterned nanotemplates. By using different shapes and geometries, it is envisaged that these nanostructures will provide novel architectures for advanced, next generation optoelectronic devices.

Professor Hoe Tan, Professor Chennupati Jagadish

Electrically-injected bottom-up III-V micro-cavity lasers

Bottom-up fabrication of lasers via epitaxial growth has been emerging as a promising alternative to the conventional top-down fabrication methods. In this project, we aim to demonstrate electrically-injected lasing in InP/InAsP multi-quantum well micro-ring cavities that are grown by the selective area epitaxy technique.

Dr Wei Wen Wong, Dr Tuomas Haggren, Professor Hoe Tan

Electrically injected metasurface lasers

Metasurfaces have emerged as a cornerstone for next-generation optics and optoelectronics. This project aims to create metasurface lasers from III-V semiconductor thin-films, that are additionally pumped electrically.  

Dr Tuomas Haggren, Professor Hoe Tan, Professor Chennupati Jagadish

Nanowire lasers for applications in nanophotonics

This project aims to investigate the concepts and strategies required to produce electrically injected semiconductor nanowire lasers by understanding light interaction in nanowires, designing appropriate structures to inject current, engineer the optical profile and developing nano-fabrication technologies. Electrically operated nanowire lasers would enable practical applications in nanophotonics.

Professor Chennupati Jagadish, Professor Hoe Tan

Quantum-well nanowire light emitting devices

In this project we aim to design and demonstrate  III-V compound semiconductor based quantum well nanowire light emitting devices with wavelength ranging from 1.3 to 1.6 μm for optical communication applications.

Professor Lan Fu, Dr Ziyuan Li, Professor Hoe Tan, Professor Chennupati Jagadish

Bottom-up, quasi-bound states in the continuum (quasi-BIC) metasurface lasers

In this project, we aim to demonstrate lasing in a bottom-up metasurface device supporting a perturbed symmetry-protected, quasi-BIC mode. The unit cell of the metasurface consists of a pair of InP nanosheet structures that are grown with the selective area epitaxy technique. 

Dr Wei Wen Wong, Professor Hoe Tan