Potential student research projects

The Research School of Physics performs research at the cutting edge of a wide range of disciplines.

By undertaking your own research project at ANU you could open up an exciting career in science.

Filter projects

Some other physics related research projects may be found at the ANU College of Engineering & Computer Science, the Mathematical Sciences Institute and the Research School of Astronomy & Astrophysics

Atomic and Molecular Physics

Atomic ionization in super-strong laser fields

Using methods of quantum many-body theory to describe elementary processes in atoms and molecules interacting with strong electromagnetic fields.

Professor Anatoli Kheifets, Dr Igor Ivanov

Quantum-Enhanced Gravimetry

Theoretical modelling the generation of quantum entanglement suitable for enhancing the sensitivity of an atom interferometer used to measure gravity. 

Dr Simon Haine, Professor Joseph Hope

Measuring and modelling free-ion hyperfine fields

Motivated by exciting prospects for measurements of the magnetism of rare isotopes produced by the new radioactive beam accelerators internationally, this experimental and computational project seeks to understand the enormous magnetic fields produced at the nucleus of highly charged ions by their atomic electron configuration.

Professor Andrew Stuchbery, Emeritus Professor Tibor Kibedi, Dr Brendan McCormick

Attosecond time-resolved atomic reactions

We apply the most advanced quantum-mechanical modeling to resolve electron motion in atoms and molecules on the atto-second (one quintillionth of a second) time scale.  Our theoretical modeling, based on a rigorous, quantitative description of correlated electron dynamics, provides insight into new physics taking place on the atomic time scale.

Professor Anatoli Kheifets, Dr Igor Ivanov

Optical quantum memory

An optical quantum memory will capture a pulse of light, store it and then controllably release it. This has to be done without ever knowing what you have stored, because a measurement will collapse the quantum state. We are exploring a "photon echo" process to achieve this goal.

Professor Ben Buchler

Positron Annihilation Spectroscopy

Understanding material defects at the atomic scale using anitmatter.

Dr Joshua Machacek, Professor Stephen Buckman

Mass-entangled ultracold helium atoms

This experimental project aims to create entangled states of ultracold helium atoms where the entanglement is between atoms of different mass. By manipulating the entangled pairs using laser induced Bragg transitions and measuring the resulting correlations, we will study how gravity affects mass-entangled particles.

Dr Sean Hodgman, Professor Andrew Truscott

Enhancing particle builder: developing comprehensive physics explanations

This project aims to enhance the educational value of the online adaptation of Particle Builder by developing comprehensive physics and mathematical explanations. Through a literature review, content creation, and analysis of engagement data, the student researcher will contribute their physics expertise to create an engaging and effective learning resource.

Mr Lachlan McGinness

Positron interactions with structured surfaces

We are investigating novel effects and applications using positrons and structured surfaces.

Dr Joshua Machacek, Dr Sergey Kruk

Interactions between antimatter and ultracold atoms

Antiparticles and antimatter have progressed from theory and science fiction to become an important and exciting area of pure and applied science. This fundamental atomic physics project will investigate how antimatter and matter interact by experimentally studying the interaction of positrons (the electron anti-particle) with trapped ultracold rubidium atoms.

Dr Sean Hodgman, Professor Stephen Buckman, Dr Joshua Machacek

Coherent control of quantum-mechanical systems

The project studies possibility of the coherent control (i.e. manipulating properties of a quantum system, such as charge density, levels populations, etc., using a suitably tailored laser pulse) for a quantum mechanical model of a molecule.

Professor Anatoli Kheifets

Atomic magnetometer for exploring physics beyond the standard model and gyroscopy

Atomic sensors are exquisitely sensitive. We aim to model and build a new generation of atomic sensors to measure magnetic fields, rotation and dark matter. 

Professor Ben Buchler