X-ray tomography and applications group

Department of Materials Physics

Deblur by defocus in a 3D X-ray microscope

This project will involve building a unified model of several theoretically-complex X-ray behaviours within the microscopes at the ANU CTLab, drawing from statistical and wave optics: spatial partial-coherence, refraction, and spectral interactions. The student will then apply this model to improve imaging capabilities at the ANU CTLab.

Dr Glenn Myers, Dr Andrew Kingston

Tomography of dynamic processes (3D movies)

Generating 3D volumes, i.e., tomography, of an object as it changes over time  (or evolves) is a challenging problem. The ability to achieve this would reveal new information and understanding of many dynamic processes.

Dr Andrew Kingston, Prof Adrian Sheppard, Dr Glenn Myers

X-ray scatter in 3D microscopes

X-ray scatter is most significant when imaging very dense/large samples: e.g. metal parts, large 3D printed components, or samples imaged on the CTLab's new "whole core" scanner. The student will develop methods to correct for its effects, both in-hardware (i.e. at the microscope) and in-software (i.e. image analysis).

Dr Andrew Kingston, Dr Glenn Myers

Wood-based mechanical metamaterials

The field of mechanical metamaterials is a fast-developing research domain, here the project aims at studying and developping wood-based and wood-inspired metamaterials.

Dr Nicolas Francois, Dr Mohammad Saadatfar, Professor Mark Knackstedt

Neutron and X-ray imaging/tomography techniques at ANSTO & Australian Synchrotron

This project involves working with scientists from imaging beamlines at the Australian Synchrotron (IMBL, XFM, MCT) and the Lucas Heights nuclear reactor (DINGO) to develop multi-modal, multi-scale, and dynamic imaging and tomography techniques alongside computational imaging scientists from ANU.

Dr Andrew Kingston, Dr Glenn Myers

X-ray speckle tracking

In this project the student will explore a cutting-edge "speckle tracking" method for measuring X-ray phase, in which computational image analysis is used to infer the X-ray phase from deformations in a known speckle pattern. This has both theoretical and experimental components.

Dr Glenn Myers, Dr Andrew Kingston

Improving extraction of Critical Minerals 

The future global economy will be underpinned by technologies that depend on critical minerals such as such as lithium, nickel, copper and rare earth elements. In this project we will utilise unique 3D imaging and microscopic/spectroscopic tools to improve the characterisation and metallurgical processing of critical mineral systems.  

Professor Mark Knackstedt, Dr Nicolas Francois, Prof Adrian Sheppard

Ghost imaging in the third dimension

In ghost imaging, images are formed based on photons that have never interacted with the sample. 3D ghost imaging was first performed in 2018 by scientists at ANU and international collaborators at the European Synchrotron Radiation Facility: the student will work with these scientists to further advance the field.

Dr Glenn Myers, Dr Andrew Kingston

Nuclear magnetism - magnetic moment measurements

This project builds on our established track record of developing novel methods to measure magnetic moments of picosecond-lived excited states in atomic nuclei, and the theoretical interpretation of those measurements. Students will help establish new methodologies to underpin future international research at the world's leading radioactive beam laboratories.
 

Professor Andrew Stuchbery, Emeritus Professor Tibor Kibedi, Professor Gregory Lane, Mr Brendan McCormick

Machine learning for tomographic reconstruction

Machine learning (and in particular deep-learning) methods have been at the centre of amazing progress in the field of computational image analysis. In this project the student will work to develop machine-learning algorithms for tomographic reconstruction, and deploy these algorithms at the ANU CTLab imaging facility.

Dr Glenn Myers, Dr Andrew Kingston

Migration of carbon dioxide injected in aquifers: convection, diffusion and dissolution

Underground carbon sequestration looks essential if the world is going to keep global warming well below 2oC.  This project will explore the physics underlying migration of injected carbon dioxide, to better understand when it will dissolve and sink to the deep earth before there is any chance of it migrating upwards.

Prof Adrian Sheppard, Professor Vincent Craig

Exploring novel X-ray scanning trajectories

The first 3D X-ray microscopes used viewing angles evenly spaced in a full 360 degrees around the sample. Recent innovations have freed us from this constraint: the microscopes at the ANU CTLab can utilise ever stranger and more innovative scanning patterns. However, this new freedom is not well explored.

Dr Andrew Kingston, Dr Glenn Myers

Measuring and modelling free-ion hyperfine fields

Motivated by exciting prospects for measurements of the magnetism of rare isotopes produced by the new radioactive beam accelerators internationally, this experimental and computational project seeks to understand the enormous magnetic fields produced at the nucleus of highly charged ions by their atomic electron configuration.

Professor Andrew Stuchbery, Emeritus Professor Tibor Kibedi, Mr Brendan McCormick

Understanding drought-resistance in Australian plants with 3D X-ray microscopy

This project will use unique, ANU-designed 3D X-ray microscopes and state-of-the art image analysis to track physiological responses of drought-tolerant Australian plants when subjected to water stress. The results will help us understand the mechanisms that underpin drought-tolerance, helping resolve ongoing debates and potentially improving the performance of dryland crops.

Prof Adrian Sheppard, Dr Levi Beeching, Dr Andrew Kingston

Updated:  16 August 2022/ Responsible Officer:  Director, RSPhys/ Page Contact:  Physics Webmaster