Potential student research projects

The Research School of Physics performs research at the cutting edge of a wide range of disciplines.

By undertaking your own research project at ANU you could open up an exciting career in science.

Filter projects

Some other physics related research projects may be found at the ANU College of Engineering & Computer Science, the Mathematical Sciences Institute and the Research School of Astronomy & Astrophysics

Astrophysics

Positron Annihilation Spectroscopy

Understanding material defects at the atomic scale using anitmatter.

Dr Joshua Machacek, Professor Stephen Buckman

Atomic and Molecular Physics

Positron Annihilation Spectroscopy

Understanding material defects at the atomic scale using anitmatter.

Dr Joshua Machacek, Professor Stephen Buckman

Atomic magnetometer for exploring physics beyond the standard model and gyroscopy

Atomic sensors are exquisitely sensitive. We aim to model and build a new generation of atomic sensors to measure magnetic fields, rotation and dark matter. 

Professor Ben Buchler

Optical quantum memory

An optical quantum memory will capture a pulse of light, store it and then controllably release it. This has to be done without ever knowing what you have stored, because a measurement will collapse the quantum state. We are exploring a "photon echo" process to achieve this goal.

Professor Ben Buchler

Mass-entangled ultracold helium atoms

This experimental project aims to create entangled states of ultracold helium atoms where the entanglement is between atoms of different mass. By manipulating the entangled pairs using laser induced Bragg transitions and measuring the resulting correlations, we will study how gravity affects mass-entangled particles.

Dr Sean Hodgman, Professor Andrew Truscott

Interactions between antimatter and ultracold atoms

Antiparticles and antimatter have progressed from theory and science fiction to become an important and exciting area of pure and applied science. This fundamental atomic physics project will investigate how antimatter and matter interact by experimentally studying the interaction of positrons (the electron anti-particle) with trapped ultracold rubidium atoms.

Dr Sean Hodgman, Professor Stephen Buckman, Dr Joshua Machacek

Positron interactions with structured surfaces

We are investigating novel effects and applications using positrons and structured surfaces.

Dr Joshua Machacek, Dr Sergey Kruk

Quantum-Enhanced Gravimetry

Theoretical modelling the generation of quantum entanglement suitable for enhancing the sensitivity of an atom interferometer used to measure gravity. 

Dr Simon Haine, Professor Joseph Hope

Biophysics

Positron Annihilation Spectroscopy

Understanding material defects at the atomic scale using anitmatter.

Dr Joshua Machacek, Professor Stephen Buckman

Engineering in Physics

Positron Annihilation Spectroscopy

Understanding material defects at the atomic scale using anitmatter.

Dr Joshua Machacek, Professor Stephen Buckman

Coherently combined laser systems for breakthrough starshot and beyond

Recent advances in laser technology now enable the combination of multiple high-quality lasers into a single high-power beam. This project aims to investigate such 'coherently-combined' laser systems within the context of Earth-to-Space laser transmission. Applications of this technology include space debris tracking, free-space optical communications, and propulsion of light-sails for interstellar travel, such as Breakthrough Starshot.

Dr Chathura Bandutunga , Dr Paul Sibley, A/Prof Michael Ireland

Miniature absolute gravimeter for long-term gravity surveys

Absolute gravimeters tie their measurement of gravity to the definition of the second 
by interrogating the position of a falling test mass using a laser interferometer. Our vision is to develop and prototype a miniaturised absolute gravimeter by 
leveraging modern vacuum, laser, and micro-electromechanical systems.

Dr Samuel Legge, Professor John Close, Prof Patrick Kluth, Dr Giovanni Guccione

Materials Science and Engineering

Positron Annihilation Spectroscopy

Understanding material defects at the atomic scale using anitmatter.

Dr Joshua Machacek, Professor Stephen Buckman

Positron interactions with structured surfaces

We are investigating novel effects and applications using positrons and structured surfaces.

Dr Joshua Machacek, Dr Sergey Kruk

Nanoscience and Nanotechnology

Positron Annihilation Spectroscopy

Understanding material defects at the atomic scale using anitmatter.

Dr Joshua Machacek, Professor Stephen Buckman

Positron interactions with structured surfaces

We are investigating novel effects and applications using positrons and structured surfaces.

Dr Joshua Machacek, Dr Sergey Kruk

Photonics, Lasers and Nonlinear Optics

Coherently combined laser systems for breakthrough starshot and beyond

Recent advances in laser technology now enable the combination of multiple high-quality lasers into a single high-power beam. This project aims to investigate such 'coherently-combined' laser systems within the context of Earth-to-Space laser transmission. Applications of this technology include space debris tracking, free-space optical communications, and propulsion of light-sails for interstellar travel, such as Breakthrough Starshot.

Dr Chathura Bandutunga , Dr Paul Sibley, A/Prof Michael Ireland

Satellite based geodesy

Precise Earth gratitational field measurements with laser-ranging interferometry.

Dr Syed Assad, Professor Ping Koy Lam, Mr Lorcan Conlon, Dr Jie Zhao

Positron interactions with structured surfaces

We are investigating novel effects and applications using positrons and structured surfaces.

Dr Joshua Machacek, Dr Sergey Kruk

Physics Education

Virtual reality for physics education

We have developed Virtual Reality apps to enahnce learning in physics education. We have recent evidence of effectiveness in correcting misconceptions in Newtonian Physics with VR. Our other app in an Electric and Magnetic field simulator. Several opportunies exist for further studies on efficacy, as well as software development. 

Dr John Debs

Quantum Science and Technology

Atomic magnetometer for exploring physics beyond the standard model and gyroscopy

Atomic sensors are exquisitely sensitive. We aim to model and build a new generation of atomic sensors to measure magnetic fields, rotation and dark matter. 

Professor Ben Buchler

Optical quantum memory

An optical quantum memory will capture a pulse of light, store it and then controllably release it. This has to be done without ever knowing what you have stored, because a measurement will collapse the quantum state. We are exploring a "photon echo" process to achieve this goal.

Professor Ben Buchler

Miniature absolute gravimeter for long-term gravity surveys

Absolute gravimeters tie their measurement of gravity to the definition of the second 
by interrogating the position of a falling test mass using a laser interferometer. Our vision is to develop and prototype a miniaturised absolute gravimeter by 
leveraging modern vacuum, laser, and micro-electromechanical systems.

Dr Samuel Legge, Professor John Close, Prof Patrick Kluth, Dr Giovanni Guccione

Quantum algorithms for combinatorial optimisation problems

Developing new quantum and quantum-inspired classical algorithms to find good solutions for NP-hard problems.

Dr Syed Assad

Satellite based geodesy

Precise Earth gratitational field measurements with laser-ranging interferometry.

Dr Syed Assad, Professor Ping Koy Lam, Mr Lorcan Conlon, Dr Jie Zhao

Mass-entangled ultracold helium atoms

This experimental project aims to create entangled states of ultracold helium atoms where the entanglement is between atoms of different mass. By manipulating the entangled pairs using laser induced Bragg transitions and measuring the resulting correlations, we will study how gravity affects mass-entangled particles.

Dr Sean Hodgman, Professor Andrew Truscott

Interactions between antimatter and ultracold atoms

Antiparticles and antimatter have progressed from theory and science fiction to become an important and exciting area of pure and applied science. This fundamental atomic physics project will investigate how antimatter and matter interact by experimentally studying the interaction of positrons (the electron anti-particle) with trapped ultracold rubidium atoms.

Dr Sean Hodgman, Professor Stephen Buckman, Dr Joshua Machacek

Beam matching using machine learning

This project aims to use a machine learning algorithm to perform beam alignment in an optics experiment. It would involve mode-matching two optical beams using motorised mirror mounts. Additional degrees of freedom like lens positions and beam polarisation can be added later.

Dr Syed Assad, Dr Aaron Tranter, Dr Jie Zhao

Quantum multi-parameter estimation

Multi-parameter state estimation at the fundamental precision limit

Dr Syed Assad, Professor Ping Koy Lam, Mr Lorcan Conlon, Dr Jie Zhao

Quantum-Enhanced Gravimetry

Theoretical modelling the generation of quantum entanglement suitable for enhancing the sensitivity of an atom interferometer used to measure gravity. 

Dr Simon Haine, Professor Joseph Hope

Quantum super resolution

When two point sources of light are close together, we just see one blurry patch. This project aims to use coherent measurement techniques in quantum optics to measure the separation between the point sources beyond the Rayleigh's limit.

Dr Syed Assad, Professor Ping Koy Lam, Dr Jie Zhao

Theoretical Physics

Quantum multi-parameter estimation

Multi-parameter state estimation at the fundamental precision limit

Dr Syed Assad, Professor Ping Koy Lam, Mr Lorcan Conlon, Dr Jie Zhao