Quantum optics group

Miniature absolute gravimeter for long-term gravity surveys

Absolute gravimeters tie their measurement of gravity to the definition of the second 
by interrogating the position of a falling test mass using a laser interferometer. Our vision is to develop and prototype a miniaturised absolute gravimeter by 
leveraging modern vacuum, laser, and micro-electromechanical systems.

Dr Samuel Legge, Professor John Close, Prof Patrick Kluth, Dr Giovanni Guccione

Beam matching using machine learning

This project aims to use a machine learning algorithm to perform beam alignment in an optics experiment. It would involve mode-matching two optical beams using motorised mirror mounts. Additional degrees of freedom like lens positions and beam polarisation can be added later.

Dr Syed Assad, Dr Aaron Tranter, Dr Jie Zhao

Laser levitation of a macroscopic mirror

This project aims to be the first in the world to use radiation pressure force of laser beams to levitate a macroscopic mirror. The coherence of this resonantly amplified scheme creates a unique opto-mechanical environment for precision quantum metrology and tests of new physics theories.

Dr Giovanni Guccione, Professor Ping Koy Lam

Quantum super resolution

When two point sources of light are close together, we just see one blurry patch. This project aims to use coherent measurement techniques in quantum optics to measure the separation between the point sources beyond the Rayleigh's limit.

Dr Syed Assad, Professor Ping Koy Lam, Dr Jie Zhao

Optical quantum memory

An optical quantum memory will capture a pulse of light, store it and then controllably release it. This has to be done without ever knowing what you have stored, because a measurement will collapse the quantum state. We are exploring a "photon echo" process to achieve this goal.

Professor Ben Buchler

Optical nonlinearities in 2D crystals

This project explores the nonlinear optical properties of ultrathin 2D crystals to develop highly entangled photon sources.

Dr Giovanni Guccione, Professor Ping Koy Lam

Integrated quantum photonics

The goal of the project is to understand new physical phenomena arising from quantum and nonlinear optical integration. In the future this research may open doors to new types of computers and simulators with information capacity exceeding the number of elementary particles in the entire universe.

Prof Andrey Sukhorukov, Dr Jinyong Ma, Dr Jihua Zhang, Prof Dragomir Neshev

Atomic magnetometer for exploring physics beyond the standard model and gyroscopy

Atomic sensors are exquisitely sensitive. We aim to model and build a new generation of atomic sensors to measure magnetic fields, rotation and dark matter. 

Professor Ben Buchler

Quantum photonics with nanostructured metasurfaces

Metasurface can the generation and manipulation of polarization-entangled photon pairs at the nanoscale.

Dr Jinyong Ma, Prof Andrey Sukhorukov, Dr Jihua Zhang

Satellite based geodesy

Precise Earth gratitational field measurements with laser-ranging interferometry.

Dr Syed Assad, Professor Ping Koy Lam, Mr Lorcan Conlon, Dr Jie Zhao

Quantum multi-parameter estimation

Multi-parameter state estimation at the fundamental precision limit

Dr Syed Assad, Professor Ping Koy Lam, Mr Lorcan Conlon, Dr Jie Zhao