Materials science and engineering

The Research School of Physics undertakes a wide range of materials science research including:

Use of ion beams to modify both electrical physical properties of materials - especially semiconductors. The School has an 1.7MeV tandem accelerator dedicated to this purpose together with a number of smaller machines used for both modification of materials and diagnostic techniques such as RBS. This ion beam modification of semiconductors is complimented by a MOCVD growth program focusing on production of semiconductor optoelectronic devices such as quantum well lasers and detectors.

Design and development of advanced polymers and glasses for use in photonic devices such as all optical fibre amplifiers, nonlinear optical devices and planar wave-guides. The School has a laser direct write system for the production of prototype optical waveguide devices such as smart couplers. We also have facilities for production of optical fibre and a major program dedicated to novel fibre materials.

Interaction between materials occurs primarily at surfaces making the study of surface topology, physics and chemistry a priority area for the School. We also have several groups studying: interactions between solute particles, from molecules to proteins. Polymers in solution. Suspensions of colloidal particles. Such interactions determine the properties of most real world systems. Examples include self assembly of biomembranes, reactivity in biotechnologies and biochemistry, chemical synthesis, and a host of chemical engineering applications, from minerals processing, oil recovery to soil science and detergent formulation and drug delivery. In support of these activities we have several advanced diagnostic techniques such as ultra high-resolution computed tomography.

The School has a strong research effort in mechanochemistry: the use of physical impact to generate powders with unique physical properties especially on the nanoscale. Various processes techniques are being developed to create selective nanostructures in economically viable commercial quantities.

The School also has an active research program in ultra high speed laser ablation for both the modification of surfaces and the creation of exotic nanoscale ablation products such as ultra light carbon foams.

Potential student research projects

You could be doing your own research into materials science and engineering. Below are some examples of student physics research projects available in our school.

Creation of novel hybrid boron nitride materials

This project focussed on the creation of novel hybrid boron nitride materials by utilizing advanced green techniques of mechanochemistry and high-pressure methods. 

Prof Jodie Bradby, Dr Xingshuo Huang

Mathematical making

Explore the geometry and symmetries of surfaces and other mathematical objects and their relevance in physical, chemical and biological contexts. 

Dr Vanessa Robins

Solving the problem of how to measure a material harder than diamond

In experiments, measuring the hardness of a very hard material is fundamentally challenging. We aim to study the physical mechanics behind nanoindentation measurements to help better measure superhard materials.

Dr Xingshuo Huang, Prof Jodie Bradby

Quantum chemistry modelling of rare earth crystals for quantum technologies

Quantum technology applications of rare earth crystals would benefit from accurate ab-initio models of how quantum properties arise from fundamental atom-atom interactions in crystals. In this project, we will adapt recent advances in molecular quantum chemistry models to rare earth crystals and apply them to quantum technology problems.

Dr Rose Ahlefeldt

Please browse our full list of available physics research projects to find a student research project that interests you.