Nanoscience and nanotechnology

We conducts extensive research into the design, growth and fabrication of semiconductor and optical devices on the nanometer scale using techniques ranging from MOCVD growth to ion beam processing. Such devices by virtue of their scale, exploit quantum effects to enhance their performance. A large part of this research program focuses on quantum well lasers and detectors of importance to the telecommunications industry.

We also research the nanoscale modification of bulk materials such as nanocrystals within semiconductors induced by ion irradiation. materials modified in this way can have unusual and technologically useful properties such as light emission at wavelengths incompatible with the bulk material band structure.

Nanotubes as their name suggests are microscopically small pipes of material such as carbon - like an elongated form of a "buckie ball". These have exciting properties such as unimaginably high tensile strengths and the School has an active research program on the efficient production of nanotubes by mechano chemistry.

Potential student research projects

You could be doing your own research into nanoscience and nanotechnology. Below are some examples of student physics research projects available in our school.

Solid state synapses and neurons - memristive devices for neuromorphic computing

Interest in neuromorphic computing has led to interest in an excting new range of of solid-state neurons and synapses based on non-volatile resistive-switching and volatile threshold-switching in metal-oxide thin films.  This project explores the operation and functionality of these new devices with an emphasis on understanding the underlying mechanisms and materials physics.

Emeritus Professor Robert Elliman, Dr Sanjoy Nandi

Nanowire infrared avalanche photodetectors towards single photon detection

This project aims to demonstrate semiconductor nanowire based infrared avalanche photodetectors (APDs) with ultra-high sensitivity towards single photon detection. By employing the advantages of their unique one-dimensional nanoscale geometry, the nanowire APDs can be engineered to different device architectures to achieve performance superior to their conventional counterparts. This will contribute to the development of next generation infrared photodetector technology enabling numerous emerging fields in modern transportation, communication, quantum computation and information processing.

Professor Lan Fu, Dr Zhe (Rex) Li, Professor Chennupati Jagadish

Defect Engineering of 2D Materials

This project investigates the structure and density of defects created in 2D materials by energetic ion irradiation, and their effect on the the physical properties of these materials.

Emeritus Professor Robert Elliman

Ultra-low contact resistance next generation semiconductor devices

Contact resistance is becoming a major limitation to device performance and new strategies are required to meet the needs of next-generation devices.  Existing contacts typically exploit the thermal and chemical stability of silicide/Si interfaces and take the form of a metal/silicide/Si heterostructure (e.g. W/TiN/TiSi2/Si), with the contact resistance dominated by the silicide/Si interface. The contact resistance of this interface is limited by the doping concentration in the Si substrate and the Schottky barrier height (SBH) of the heterojunction.  However, doping concentrations already exceed equilibrium solid solubility limits and further increases achieve only minor improvements.  Instead, any further reduction in contact resistivity relies on reducing the SBH.  This project will explore methods for controlling the SBH and develop device structures for measuring ultra-low contact resistivities.

Emeritus Professor Robert Elliman, Mr Tom Ratcliff

Please browse our full list of available physics research projects to find a student research project that interests you.