Nonlinear and quantum photonics group

Integrated quantum photonics

The goal of the project is to understand new physical phenomena arising from quantum and nonlinear optical integration. In the future this research may open doors to new types of computers and simulators with information capacity exceeding the number of elementary particles in the entire universe.

Prof Andrey Sukhorukov, Dr Jinyong Ma, Dr Jihua Zhang, Prof Dragomir Neshev

Synthetic multi-dimensional photonics

This project goal is to investigate, theoretically and experimentally, photonic systems with synthetic dimensionality exceeding the three spatial dimensions, and reveal new opportunities for applications in optical signal switching and sensing in classical and quantum photonics.

Prof Andrey Sukhorukov, Dr Jihua Zhang

Nanostructured Metasurfaces for Optical Telescopes

Traditional optical systems use multiple optical elements to achieve imaging or detection goals. Ground-based and space-based telescopes are limited by manufacturing and engineering constraints. The ultra-thin nature of metasurfaces makes them a superior design choice for optical systems that are constrained by the size, weight and complexity of conventional optics. 

Dr Josephine Munro, Prof Andrey Sukhorukov

Nonlinear topological photonics

The project bridges the fundamental physics of topological phases with nonlinear optics. This promising synergy is expected to unlock advanced functionalities for applications in optical sources, frequency combs, isolators and multiplexers, switches and modulators, both for classical and quantum light. 

Dr Daria Smirnova

Quantum photonics with nanostructured metasurfaces

Metasurface can the generation and manipulation of polarization-entangled photon pairs at the nanoscale.

Dr Jinyong Ma, Prof Andrey Sukhorukov, Dr Jihua Zhang