Potential student research projects

The Research School of Physics performs research at the cutting edge of a wide range of disciplines.

By undertaking your own research project at ANU you could open up an exciting career in science.

Filter projects

Some other physics related research projects may be found at the ANU College of Engineering & Computer Science, the Mathematical Sciences Institute and the Research School of Astronomy & Astrophysics

Biophysics

Specific ion effects

We are seeking students to perform fundamental research into how different ions exert influence in a myriad of systems.

Professor Vincent Craig

Solid-state nanopore sensors: Unveiling New Frontiers in Biomolecule Detection

Investigate novel nanopore bio-sensors using nanofabrication, bio-chemsity and machine learning.

Prof Patrick Kluth

Clean Energy

Creating new materials using pressure and diamond anvil cells

New forms of materials can be made using extreme pressures via diamond anvil cells.

Prof Jodie Bradby, Dr Xingshuo Huang

Engineering in Physics

Creating new materials using pressure and diamond anvil cells

New forms of materials can be made using extreme pressures via diamond anvil cells.

Prof Jodie Bradby, Dr Xingshuo Huang

Miniature absolute gravimeter for long-term gravity surveys

Absolute gravimeters tie their measurement of gravity to the definition of the second 
by interrogating the position of a falling test mass using a laser interferometer. Our vision is to develop and prototype a miniaturised absolute gravimeter by 
leveraging modern vacuum, laser, and micro-electromechanical systems.

Dr Samuel Legge, Professor John Close, Prof Patrick Kluth, Dr Giovanni Guccione

Environmental Physics

Nanobubbles

Nanobubbles are simply nanosized bubbles. What makes them interesting? Theory tells us they should dissolve in less than a second but they are in some cases stable for days.

Professor Vincent Craig

Surface forces and the behaviour of colloidal systems

We measure the basic forces that operate between molecules that are manifest at interfaces. These forces control the stability of colloidal systems from blood to toothpaste. We use very sensitive techniques that are able to measure tiny forces with sub nanometer distance resolution. Understanding these forces enables us to predict how a huge variety of colloidal systems will behave.

Professor Vincent Craig

Materials Science and Engineering

Creating new materials using pressure and diamond anvil cells

New forms of materials can be made using extreme pressures via diamond anvil cells.

Prof Jodie Bradby, Dr Xingshuo Huang

Functional nanopore membranes

Nano-pore membranes have important applications in chemical- and bio-sensing, water filtration and protein separation. This project will investigate our innovative technology to fabricate nanopore membranes in silicon dioxide and silicon nitride and exploit their use for advanced applications.

Prof Patrick Kluth

Colloidal systems in highly concentrated salt solutions

We are studying colloidal systems in highly concentrated salt solutions. Here a number of surprising and unexplained things happen that are associated with surprisingly long-ranged electrostatic forces

Professor Vincent Craig

Nanofluidic diodes: from biosensors to water treatment

Controlling the flow of ions and molecules through nano-sized pores is fundamental in many biological processes and the basis for applications such as DNA detection, water desalination and drug delivery. The project aims to develop solid-state nanofluidic diodes and exploit their properties for applications in bio-sensors and ion-selective channels.

Prof Patrick Kluth

Nanoscience and Nanotechnology

Creating new materials using pressure and diamond anvil cells

New forms of materials can be made using extreme pressures via diamond anvil cells.

Prof Jodie Bradby, Dr Xingshuo Huang

Specific ion effects

We are seeking students to perform fundamental research into how different ions exert influence in a myriad of systems.

Professor Vincent Craig

Functional nanopore membranes

Nano-pore membranes have important applications in chemical- and bio-sensing, water filtration and protein separation. This project will investigate our innovative technology to fabricate nanopore membranes in silicon dioxide and silicon nitride and exploit their use for advanced applications.

Prof Patrick Kluth

Colloidal systems in highly concentrated salt solutions

We are studying colloidal systems in highly concentrated salt solutions. Here a number of surprising and unexplained things happen that are associated with surprisingly long-ranged electrostatic forces

Professor Vincent Craig

Solid-state nanopore sensors: Unveiling New Frontiers in Biomolecule Detection

Investigate novel nanopore bio-sensors using nanofabrication, bio-chemsity and machine learning.

Prof Patrick Kluth

Nanofluidic diodes: from biosensors to water treatment

Controlling the flow of ions and molecules through nano-sized pores is fundamental in many biological processes and the basis for applications such as DNA detection, water desalination and drug delivery. The project aims to develop solid-state nanofluidic diodes and exploit their properties for applications in bio-sensors and ion-selective channels.

Prof Patrick Kluth

Nanobubbles

Nanobubbles are simply nanosized bubbles. What makes them interesting? Theory tells us they should dissolve in less than a second but they are in some cases stable for days.

Professor Vincent Craig

Surface forces and the behaviour of colloidal systems

We measure the basic forces that operate between molecules that are manifest at interfaces. These forces control the stability of colloidal systems from blood to toothpaste. We use very sensitive techniques that are able to measure tiny forces with sub nanometer distance resolution. Understanding these forces enables us to predict how a huge variety of colloidal systems will behave.

Professor Vincent Craig

Quantum Science and Technology

Miniature absolute gravimeter for long-term gravity surveys

Absolute gravimeters tie their measurement of gravity to the definition of the second 
by interrogating the position of a falling test mass using a laser interferometer. Our vision is to develop and prototype a miniaturised absolute gravimeter by 
leveraging modern vacuum, laser, and micro-electromechanical systems.

Dr Samuel Legge, Professor John Close, Prof Patrick Kluth, Dr Giovanni Guccione