Measuring and modelling free-ion hyperfine fields

Motivated by exciting prospects for measurements of the magnetism of rare isotopes produced by the new radioactive beam accelerators internationally, this experimental and computational project seeks to understand the enormous magnetic fields produced at the nucleus of highly charged ions by their atomic electron configuration.

Professor Andrew Stuchbery, Emeritus Professor Tibor Kibedi, Mr Brendan McCormick

Exotic nuclear structure towards the neutron dripline

Investigate the properties of exotic nuclei and their impact on fundamental models and creation of the elements when stars explode. 

Dr AJ Mitchell

Nuclear lifetimes - developing new apparatus and methods

The measurement of the lifetimes of excited nuclear states is foundational for understanding nuclear excitations. This project covers three measurement methods that together span the nuclear lifetime range from about 100 femtoseconds to many nanoseconds. The project can include equipment development, measurement, and the development of analysis methodology (programming and computation). 

Professor Andrew Stuchbery, Emeritus Professor Tibor Kibedi, Professor Gregory Lane, Mr Ben Coombes

Nuclear vibrations in near-spherical and deformed nuclei

This project aims to discover if the long-held concept of low-energy nuclear vibrations holds true under scrutiny from Coulomb excitation and nucleon-transfer reactions. 

Professor Andrew Stuchbery, Professor Gregory Lane, Dr AJ Mitchell, Mr Ben Coombes

Nuclear batteries: Energy-storage applications of nuclear isomers

Nuclear metastable states, known colloquially as isomers, have energy densities millions of times greater than chemical batteries. This project investigates nuclear pathways for reliably extracting this energy from candidate isotopes on demand. 

Dr AJ Mitchell, Professor Gregory Lane

Radioimpurities in particle detectors for dark matter studies

This experiment will characterise dark matter detector material. Lowest levels of natural radioactivity in high purity samples will be analysed via ultra-senstive single atom counting using acclerator mass spectrometry.

Dr Michaela Froehlich , Dr Zuzana Slavkovska, A/Prof Stephen Tims, Professor Gregory Lane

Nuclear magnetism - magnetic moment measurements

This project builds on our established track record of developing novel methods to measure magnetic moments of picosecond-lived excited states in atomic nuclei, and the theoretical interpretation of those measurements. Students will help establish new methodologies to underpin future international research at the world's leading radioactive beam laboratories.

Professor Andrew Stuchbery, Emeritus Professor Tibor Kibedi, Professor Gregory Lane, Mr Brendan McCormick

Ultra-fast lifetime measurements of nuclear excited states

Use ultra-fast gamma-ray detectors to perform excited-state lifetime measurements and investigate single-particle and collective features of atomic nuclei. 

Professor Gregory Lane, Dr AJ Mitchell, Professor Andrew Stuchbery, Emeritus Professor Tibor Kibedi

Nuclear structure studies with particle transfer reactions

This project will use nuclear reactions to study the basic make-up of atomic nuclei at the quantum level, and investigate the impact of nuclear structure on sub-atomic forces and fundamental physics. 

Dr AJ Mitchell, Professor Gregory Lane, Professor Andrew Stuchbery, Emeritus Professor Tibor Kibedi

Space radiation modelling

Modelling space radiation environments to inform ground-based radiation testing at the Heavy Ion Accelerator Facility (HIAF).

Dr Ian Carter, Mr Ben Coombes

Updated:  22 May 2022/ Responsible Officer:  Director, RSPhys/ Page Contact:  Physics Webmaster