Potential student research projects

The Research School of Physics & Engineering performs research at the cutting edge of a wide range of disciplines.

By undertaking your own research project at RSPE you could open up an exciting career in science.

Filter projects

Theoretical Physics

Causality vs free will in quantum correlations

The strong correlations between entangled quantum systems can be explained only by giving up one of determinism, relativistic locality, or experimental free will. In the latter case, the choice of experimental settings is statistically dependent on hidden system variables. This project examines information properties of such a dependence.

Dr Michael Hall

Low-energy tests of the signatures of quantum gravity

This project will investigate the potential of various experimental platforms to search for effects of quantum gravity.

Dr Simon Haine

Introduction to quantum integrable systems

The aim of this project is to introduce quantum integrable systems which play a very important role in modern theoretical physics. Such systems provide one of very few ways to analyze nonlinear effects in continuous and discrete quantum systems.

Dr Vladimir Mangazeev

Nuclear magnetism - magnetic moment measurements

A novel technique devised at ANU has recently given a breakthrough in the precision with which the magnetic moments of picosecond-lived excited states in sd-shell nuclei (i.e. isotopes of oxygen through to calcium) may be measured. A sequence of precise measurements will be performed to comprehensively test the shell model.

Professor Andrew Stuchbery, Dr Tibor Kibedi, Professor Gregory Lane, Mr Brendan McCormick

Quantum Squeezing Atomic Ensembles

The aim of this project is to explore theoretically the application of quantum squeezing to a variety of quantum sensors and to incorporate optimal quantum squeezing into the design quantum gravimeters and quantum magnetometers.

Professor John Close, Dr Stuart Szigeti

Theory of nuclear fission

Heavy atomic nuclei may fission in lighter fragments, releasing a large amount of energy which is used in reactors. Advanced models of many-body quantum dynamics are developed and used to describe this process.

Dr Cédric Simenel

Quantum tunnelling in many-body systems

Quantum tunnelling is a fundamental process in physics. How this process occurs with composite (many-body) systems, and in particular how it relates to decoherence and dissipation, are still open questions.

Dr Cédric Simenel, Dr Edward Simpson

Quantum coherence and metrology

A quantum state has "coherence" if it is in a superposition of some classical states. In some way, coherence measures the quantumness of that state. We aim to study the coherence of simple systems and also establish a relationship between coherence and quantum metrology.

Dr Syed Assad, Professor Ping Koy Lam

Stochastic dynamics of interacting systems and integrability

There are many interesting physical statistical systems which never reach thermal equilibrium. Examples include surface growth, diffusion processes or traffic flow. In the absence of general theory of such systems a study of particular models plays a very important role. Integrable systems provide examples of such systems where one can analyze time dynamics using analytic methods.

Dr Vladimir Mangazeev

New trends in separation of variables

A separation of variables is a standard technique in classical mechanics which allows to reduce a complicated dynamics with many degrees of freedom to a set of one-dimensional problems. Surprisingly this method finds its natural generalization in the theory of quantum integrable systems. This project aims to study such systems and apply results to the theory of special functions in one and several variables.

Dr Vladimir Mangazeev

Nuclear models in nuclear structure and reactions

Nuclei are complex quantum systems and thus require advanced modelling to understand their structure properties. This project uses such models to interpret experimental data taken at the ANU and at overseas nuclear facilities.

Dr Edward Simpson, Professor Andrew Stuchbery, Dr Cédric Simenel

Quantum Wavelets

In this project, we represent an expanding quantum wavepacket in a wavelet basis and use the representation to analyse new data from a state of the art quantum gravity sensor.

Professor John Close, Dr Stuart Szigeti

Soft Condensed Matter: Molecules made by Threading

Of great recent interest is the subject of rotaxanes.  Rotaxanes are molecules  where one or more ring
components is threaded onto an axle that is capped on both ends with stoppers to prevent the rings from
falling o ff. These systems exhibit complex and fascinating physics.

Professor David Williams

Some other physics related research projects may be found at the ANU College of Engineering & Computer Science and the Research School of Astronomy & Astrophysics

Updated:  29 April 2019/ Responsible Officer:  Director, RSPE/ Page Contact:  Physics Webmaster