
Related departments
The discovery of quantum physics opened a realm of wondrous phenomena which have come to underpin our modern world. Scientists at ANU are part of this new era – unravelling fundamental quantum effects, harnessing them to create the next generation of technologies and bring them to market.
Some of our theoreticians work on the basic formulism of quantum theory, while others apply it to quantum information, many-body systems like nuclei or Bose-Einstein condensates, polariton-excitons, photonics and even quantum gravity.
We are exploring how to use the extreme sensitivity of quantum systems for sensing technology – ranging from sensors of gravity and motion, to electromagnetic fields – to enhancing the detection of gravitational waves, to atomic clocks and quantum microscopy – the imaging of individual atoms.
ANU hosts a comprehensive array of enabling technologies that enable the design of novel quantum materials and technologies. Our large suite of nanofabrication facilities include MOCVD growth systems, diagnostic capabilities and testing facilities, and features one of Australia’s leading nuclear physics establishments, the Heavy-Ion Accelerator Facility.
We are developing quantum computers and the algorithms to run on them, but also land- and space-based quantum network technology and encryption protocols for enhanced security. By integrating these networks and computers we are working to build a quantum internet that stretches across the globe.
We have launched quantum technology start-up companies across all domains of quantum technology: sensing, cryptography, computing and enabling classical technologies. We also have major projects with Defence in precision navigation, gravimetry and secure quantum communications.
We’re partners in four ARC Centres of Excellence, working on developing next generation quantum computing and communication technology (CQC2T), quantum materials, engines and precision imaging systems for quantum machines (EQUS), quantum noise reduction technology, and applying it to gravitational wave astrophysics (OzGrav), and low-energy electronics based on quantum materials (FLEET).
Students at all levels have the chance to engage with our researchers and take part in cutting-edge research, via undergraduate research topics, our selection of Masters programs, through to PhD research.
Potential student research projects
You could be doing your own research into fusion and plasma confinement. Below are some examples of student physics research projects available in RSPE.

Laser levitation of a macroscopic mirror
This project aims to be the first in the world to use radiation pressure force of laser beams to levitate a macroscopic mirror. The coherence of this resonantly amplified scheme creates a unique opto-mechanical environment for precision quantum metrology...

Quantum emitters in 2D materials
This project focuses on the integration of quantum emitters in 2D materials with photonic and optoelectronic platforms, enabling new applications in quantum communications and quantum information processing.

Quantum photonics with nanostructured metasurfaces
Metasurface can the generation and manipulation of polarization-entangled photon pairs at the nanoscale.

Interactions between antimatter and ultracold atoms
Antiparticles and antimatter have progressed from theory and science fiction to become an important and exciting area of pure and applied science. This fundamental atomic physics project will investigate how antimatter and matter interact by experimentally...

Atomic magnetometer for exploring physics beyond the standard model
The Global Network of Optical Magnetometers for Exotic Physics (GNOME) uses precision atomic magnetometers to look new physics. The concept is to have a global network of magnetometers looking for correlated magnetic field fluctuations that may be caused...

How does a quantum system reach equilibrium?
The idea of equilibration is ubiquitous throughout nature. Out-of-equilibrium dynamics – be it caused by a disturbance and subsequent “rethermalisation”, or by passing through a phase transition – is a difficult question to characterise....
Please browse our full list of available physics research projects to find a student research project that interests you.
Updated: 1 February 2023/ Responsible Officer: Director, RSPhys/ Page Contact: Physics Webmaster