Clean energy research

Physics underpins most technological advance and as a result, has a key role to play in addressing the looming energy crisis. Whilst many of our research programs contribute to this effort, there are three principle areas in which clean energy research undertaken within the School.

Fusion Power: The basic principle of a fusion reactor is to heat a mass of hydrogen isotopes, deuterium and tritium, to many millions of degrees causing them to fuse together into helium releasing vast amounts of energy in the process. Fusion is attractive because it generates vast amounts of power without any greenhouse emissions or long-lived radioactive waste. The School hosts Australia's H-1 toroidal stellarator National Facility, which although on a smaller scale than prototype reactors such as ETA, offers excellent flexibility in its configuration. H1 is particularly suited to the development of advanced diagnostic instrumentation some of which has been employed on large-scale reactors overseas.

The School also has a research program focused on the development of plasma-based nanotechnologies to create highly efficient fuel cells. These cells use only 20% of the platinum of conventional cells and may represent a crucial step on the road to clean transport.

Multi-layer solar cells manufactured from compound semiconductors such as gallium arsenide have the potential to offer greatly increased efficiency over conventional silicon cells in certain applications. As part of our wider research program in the growth and fabrication of III-V semiconductor devices, the School has an active program in the application of these compounds to solar power generation.

Potential student research projects

You could be doing your own research into clean energy. Below are some examples of student physics research projects available in our school.

Migration of carbon dioxide injected in aquifers: convection, diffusion and dissolution

Underground carbon sequestration looks to be essential if the world is to keep global warming below 2oC.  This project will explore the physics underlying migration of injected carbon dioxide, to better understand when it will dissolve and sink to the deep earth before there is any chance of it migrating upwards.

Prof Adrian Sheppard, Professor Vincent Craig

Flexible, Cost-effective III-V Semiconductor-Perovskite Tandem Solar Cells

This project aims to develop high efficiency, cost-effective III-V semiconductor-perovskite tandem solar cells which are flexible and lightweight, while achieving excellent device stability.

Professor Hoe Tan, Dr Tuomas Haggren, Professor Chennupati Jagadish

Machine learning approaches for nuclear fusion reactions

Proton-boron fusion has the potential to deliver limitless clean energy. This project will aims to understand the physics underpinng this important nuclear reaction by developing machine learning approaches to analyse complex reaction probabilities.

Dr Edward Simpson

Creating new materials using pressure and diamond anvil cells

New forms of materials can be made using extreme pressures via diamond anvil cells.

Prof Jodie Bradby, Ms Xingshuo Huang

Please browse our full list of available physics research projects to find a student research project that interests you.