Use lasers to sculpt matter at the nanoscale! In this project you’ll create shimmering holographic patterns and functional nanostructures on metals and glasses, exploring their applications in photonics, anti-counterfeiting, and smart coatings—all while uncovering the physics of light–matter interaction.
Metasurfaces are ultra-thin nanostructured materials that can shape and control light in extraordinary ways, but to be practical they must be tunable rather than fixed. This project develops liquid crystal–integrated metasurfaces to create reconfigurable flat optical devices for dynamic focusing, beam steering, and advanced sensing.
The project bridges the fundamental physics of topological phases with nonlinear optics. This promising synergy is expected to unlock advanced functionalities for applications in optical sources, frequency combs, isolators and multiplexers, switches and modulators, both for classical and quantum light.
This project will pioneer compact, low-loss terahertz polarisation optics—polarisers, waveplates, and circular polarisers—by harnessing artificial birefringence in metamaterials to overcome the limitations of natural crystals.