Quantum hard drive breakthrough

Friday 9 January 2015 10am

Physicists developing a prototype quantum hard drive have improved storage time by a factor of more than 100.

The team’s record storage time of six hours is a major step towards a secure worldwide data encryption network based on quantum information, which could be used for banking transactions and personal emails.

“We believe it will soon be possible to distribute quantum information between any two points on the globe,” said lead author Manjin Zhong, from the Research School of Physics and Engineering(RSPE).

“Quantum states are very fragile and normally collapse in milliseconds. Our long storage times have the potential to revolutionise the transmission of quantum information.”

Quantum information promises unbreakable encryption because quantum particles such as photons of light can be created in a way that intrinsically links them. Interactions with either of these entangled particles affect the other, no matter how far they are separated.

The team of physicists at ANU and the University of Otago stored quantum information in atoms of the rare earth element europium embedded in a crystal.

Their solid-state technique is a promising alternative to using laser beams in optical fibres, an approach which is currently used to create quantum networks around 100 kilometres long.

“Our storage times are now so long that it means people need to rethink what is the best way to distribute quantum data,” Ms Zhong said. 

“Even transporting our crystals at pedestrian speeds we have less loss than laser systems for a given distance.”

“We can now imagine storing entangled light in separate crystals and then transporting them to different parts of the network thousands of kilometres apart. So, we are thinking of our crystals as portable optical hard drives for quantum entanglement.”

Writing quantum information onto a europium ion embedded in a crystal. Image Solid State Spectroscopy Group, ANU
Writing quantum information onto a europium ion embedded in a crystal. Image Solid State Spectroscopy Group, ANU

After writing a quantum state onto the nuclear spin of the europium using laser light, the team subjected the crystal to a combination of a fixed and oscillating magnetic fields to preserve the fragile quantum information.

“The two fields isolate the europium spins and prevent the quantum information leaking away,” said Dr Jevon Longdell of the University of Otago.

The ANU group is also excited about the fundamental tests of quantum mechanics that a quantum optical hard drive will enable.

"We have never before had the possibility to explore quantum entanglement over such long distances," said Associate Professor Matthew Sellars, leader of the research team.

“We should always be looking to test whether our theories match up with reality. Maybe in this new regime our theory of quantum mechanics breaks.”

Their research is published in Nature.

Nature have also published a review of the work.


First published here: http://cmbe-cpms.anu.edu.au/whats-on/all-news/quantum-hard-drive-breakthrough-0


Mrs Andrea Butler
E: Andrea.Butler@anu.edu.au
T: (02)61257100

Related news stories

Quantum internet a step closer with data storage breakthrough

Scientists at The Australian National University (ANU) have found a new way to store quantum data long enough to share the information around a next-generation internet which promises to be impervious to hacking. The work, published in Nature Physics, addresses a crucial challenge that has eluded researchers...

Crystal-clear future for quantum computing

It’s been predicted that by 2040, we will not have the capability to power all of the world’s computers. This is why the effort to build a quantum computer—which overcomes the limitations of energy efficiency—has been called the “space race of the 21st Century”. And...

A step closer to a data superhighway for future internet

An international team of researchers led by ANU is helping to build a safe data superhighway for the highly anticipated quantum internet, which promises a new era of artificial intelligence and ultra-secure communication. Associate Professor Andrey Sukhorukov said the data being shared on this future...

New silicon promises sunnier days for solar tech

An international research team led by The Australian National University (ANU) has made a new type of silicon that better uses sunlight and promises to cut the cost of solar technology. The researchers say their world-first invention could help reduce the costs of renewable electricity below...