Crystal-clear future for quantum computing

Wednesday 18 April 2018

It’s been predicted that by 2040, we will not have the capability to power all of the world’s computers. This is why the effort to build a quantum computer—which overcomes the limitations of energy efficiency—has been called the “space race of the 21st Century”.

And physicists from ANU are getting ready for take-off.

Scientists working at the Centre for Quantum Computation and Communication Technology (CQC2T) at the ANU Research School of Physics and Engineering have found a new way to store quantum data long enough to share the information around a next-generation internet which promises to be impervious to hacking.

Lead researcher Associate Professor Matthew Sellars says the improved storage is an important part of a viable quantum internet.

"Our work will allow us to build a global network to connect quantum computers."

Dr Rose Ahlefeldt, also from CQC2T, says quantum memory allows scientists to buffer and synchronise quantum information, operations necessary for long-range and ultra-secure encrypted communications.

"At the moment researchers are using memories that don't work at the right wavelength, and have to employ a complicated conversion process to and from the communications wavelength.”

"This can be inefficient, and means they have to do three very difficult things instead of just one."

To improve on these inefficiencies, the ANU team used erbium, a rare earth element, in a crystal. Erbium has unique quantum properties and operates in the same bandwidth as existing fibre optic networks, eliminating the need for a conversion process.

This increased the storage time of telecom-compatible quantum memory by 10,000 times compared to previous efforts.

"We have shown that an erbium-doped crystal is the perfect material to form the building blocks of a quantum internet that will unlock the full potential of future quantum computers," Associate Professor Sellars said.

"We had this idea 10 years ago, but many of our peers told us that such a simple idea couldn't work. Seeing this result, it feels great to know that our approach was the right one."


Associate Professor Matthew Sellars
T: (02)61254571

Related news stories

Quantum internet a step closer with data storage breakthrough

Scientists at The Australian National University (ANU) have found a new way to store quantum data long enough to share the information around a next-generation internet which promises to be impervious to hacking. The work, published in Nature Physics, addresses a crucial challenge that has eluded researchers...

RSPE physicist named ACT Scientist of the Year

The secure networks, artificial intelligence and new drugs of the future could all find their origins in a crystal, according to research by the 2018 ACT Scientist of the Year Dr Rose Ahlefeldt from The Australian National University (ANU). Dr Ahlefeldt’s research is trying to find the right materials...

Teleportation fidelity the big winner in the quantum lottery

Running your quantum system as a lottery turns out to be a way to improve the transmission of data via quantum teleportation. Researchers at the Research School of Physics used a probabilistic twist to develop a new transmission protocol that set a new record in data transmission: 92 percent fidelity,...

World's first market-ready diamond-based quantum accelerator coming to Australia

Quantum Brilliance, a venture-backed Australian quantum computing startup from The Australian National University (ANU), will install the world’s first diamond quantum accelerator at the Pawsey Supercomputing Centre. Quantum Brilliance harnesses synthetic diamonds to build quantum accelerators...