Quantum internet a step closer with data storage breakthrough

Tuesday 12 September 2017 10am

Scientists at The Australian National University (ANU) have found a new way to store quantum data long enough to share the information around a next-generation internet which promises to be impervious to hacking.

The work, published in Nature Physics, addresses a crucial challenge that has eluded researchers worldwide.

Lead researcher Associate Professor Matthew Sellars from the ANU Research School of Physics and Engineering said the improved storage was an important part of a viable quantum internet.

“The effort to build a quantum computer is often described as the space race of the 21st century,” said Dr Sellars, who is the Program Manager in the Centre for Quantum Computation and Communication Technology (CQC2T) at ANU.

“Our work will allow us to build a global network to connect quantum computers.”

The team used a rare earth element, called erbium, in a crystal to increase the storage time of telecom-compatible quantum memory by 10,000 times compared to previous efforts.

Erbium has unique quantum properties and operates in the same bandwidth as existing fibre optic networks, eliminating the need for a conversion process.

“We have shown that an erbium-doped crystal is the perfect material to form the building blocks of a quantum internet that will unlock the full potential of future quantum computers,” Dr Sellars said.

“We had this idea 10 years ago, but many of our peers told us that such a simple idea couldn’t work. Seeing this result, it feels great to know that our approach was the right one.”

Dr Rose Ahlefeldt from the ANU Research School of Physics and Engineering said quantum memory allowed scientists to buffer and synchronise quantum information, operations necessary for long- range and ultra-secure encrypted communications.

“At the moment researchers are using memories that don’t work at the right wavelength, and have to employ a complicated conversion process to and from the communications wavelength,” said Dr Ahlefeldt, who is a Discovery Early Career Research Award (DECRA) Fellow and is also from the CQC2T.

“This can be inefficient, and means they have to do three very difficult things instead of just one.”

First author and PhD scholar Miloš Rančić said the new technology can also be operated as a quantum light source or used as an optical link for solid-state quantum computing devices, connecting them to the quantum internet.

“Our technology can connect with many types of quantum computers including CQC2T’s silicon qubits and superconducting qubits, which Google and IBM are developing,” said Mr RancÌŒić from the ANU Research School of Physics and Engineering and the CQC2T.

Contact

Associate Professor Matthew Sellars
E: matthew.sellars@anu.edu.au
T: (02)61254571

Related news stories

Crystal-clear future for quantum computing

It’s been predicted that by 2040, we will not have the capability to power all of the world’s computers. This is why the effort to build a quantum computer—which overcomes the limitations of energy efficiency—has been called the “space race of the 21st Century”. And...

RSPE physicist named ACT Scientist of the Year

The secure networks, artificial intelligence and new drugs of the future could all find their origins in a crystal, according to research by the 2018 ACT Scientist of the Year Dr Rose Ahlefeldt from The Australian National University (ANU). Dr Ahlefeldt’s research is trying to find the right materials...

Teleportation fidelity the big winner in the quantum lottery

Running your quantum system as a lottery turns out to be a way to improve the transmission of data via quantum teleportation. Researchers at the Research School of Physics used a probabilistic twist to develop a new transmission protocol that set a new record in data transmission: 92 percent fidelity,...

Seeing into the ground with gravity

It’s a challenge to see into the ground, but high resolution gravity measurements could be a way to reveal underground structures – caves, tunnels or even water bodies. Physicists from the Department of Quantum Sciences and Technology tried out this hypothesis at Wee Jasper, near Canberra,...