Physics of the nucleus

The School operates the premier facility in Australia for accelerator-based research in physics of the nucleus. These facilities are centred on the 14UD electrostatic heavy-ion accelerator and a new modular superconducting linear accelerator booster. The accelerators feed a variety of experiments and instrumentation, enabling the study of:

  • Fusion and Fission Dynamics with Heavy Ions
  • Nuclear Spectroscopy
  • Nuclear Moments and Hyperfine Fields
  • Perturbed Angular Correlations and Hyperfine Interactions applied to Materials
  • Heavy Ion Elastic Recoil Detection Analysis (ERDA)
  • Accelerator Mass Spectrometry (AMS)

Selected research highlights

Related departments

Potential student research projects

You could be doing your own research into fusion and plasma confinement. Below are some examples of student physics research projects available in RSPE.

Please browse our full list of available physics research projects to find a project that interests you.

This project uses novel techniques to investigate reactions of light weakly-bound nuclei, both stable and exotic, which challenge our understanding of nuclear reaction dynamics.

» Find out more about this project

A novel technique devised at ANU has recently given a breakthrough in the precision with which the magnetic moments of picosecond-lived excited states in sd-shell nuclei (i.e. isotopes of oxygen through to calcium) may be measured. A sequence of precise measurements will be performed to comprehensively test the shell model.

» Find out more about this project

There is growing recognition that molecularly targeted radiopharmaceuticals that incorporate low energy electron emitting radioisotopes can provide a precise means of delivering lethal doses to cancer cells while sparing the neighbouring healthy ones. This unique therapeutic effect is due to the high energy deposition of low-energy electrons passing through the biological medium. 

» Find out more about this project

Electric monopole (E0) transitions between nuclear states with same parity and spin are very sensitive tools to examine structural changes. This project is aiming to develop a new high resolution setup to measure angular correlations between conversion electrons and gamma rays.

» Find out more about this project

Updated:  17 August 2017/ Responsible Officer:  Director, RSPE/ Page Contact:  Physics Webmaster