Clean energy research

Physics underpins most technological advance and as a result, has a key role to play in addressing the looming energy crisis. Whilst many of our research programs contribute to this effort, there are three principle areas in which clean energy research undertaken within the School.

Fusion Power: The basic principle of a fusion reactor is to heat a mass of hydrogen isotopes, deuterium and tritium, to many millions of degrees causing them to fuse together into helium releasing vast amounts of energy in the process. Fusion is attractive because it generates vast amounts of power without any greenhouse emissions or long-lived radioactive waste. The School hosts Australia's H-1 toroidal stellarator National Facility, which although on a smaller scale than prototype reactors such as ETA, offers excellent flexibility in its configuration. H1 is particularly suited to the development of advanced diagnostic instrumentation some of which has been employed on large-scale reactors overseas.

The School also has a research program focused on the development of plasma-based nanotechnologies to create highly efficient fuel cells. These cells use only 20% of the platinum of conventional cells and may represent a crucial step on the road to clean transport.

Multi-layer solar cells manufactured from compound semiconductors such as gallium arsenide have the potential to offer greatly increased efficiency over conventional silicon cells in certain applications. As part of our wider research program in the growth and fabrication of III-V semiconductor devices, the School has an active program in the application of these compounds to solar power generation.

Selected research highlights

Potential student research projects

You could be doing your own research into fusion and plasma confinement. Below are some examples of student physics research projects available in RSPE.

Please browse our full list of available physics research projects to find a project that interests you.

The project aims to add particle orbit effects to an ANU developed theory for solving the electric field structure of Energetic Geodesic Acoustic Modes (EGAMs). EGAMs are unstable electrostatic oscillations in tokamak plasmas that are harmful to plasma confinements. The project involves analytic components as well as code developments.

» Find out more about this project

This project aims to develop GaN-based semiconductor photoelectrodes for highly efficient solar to hydrogen generation by band bending and surface engineering at the semiconductor-electrolyte interface.

» Find out more about this project

This computational and theoretical project will extract geometric information from sequences of newly obtained 3D x-ray microscope images to better understand how two immiscible fluids interact inside complex porous materials.

» Find out more about this project

There is an imminent need to reduce our dependence on carbon-based fuels in order to minimize the
potential adverse outcomes associated with climate change. This project aims to develop an efficient means of producing clean hydrogen fuel by splitting water under sunlight using novel hematite based semiconductor electrodes for efficient solar hydrogen generation.

» Find out more about this project

Updated:  17 August 2017/ Responsible Officer:  Director, RSPE/ Page Contact:  Physics Webmaster