Available student project - Metasurface polarization optics and quantum photonics

Research fields

Metasurface enabled polarization transformation for sensitive monitoring of small deviations around an arbitrarily chosen elliptical polarization state on the Poincaré sphere.

Project details

Polarization is a fundamental property of light which can be used to record, process and store information in both classical and quantum regions. The variation of polarization state after light-matter interaction can provide valuable information in addition to the intensity, phase and frequency of light. Therefore, monitoring polarization and its change is a critical concept in many developing techniques. However, conventional polarization detectors are bulky, reliant on moving parts, and limited in time resolution.

Recently, metasurfaces (planar artificial materials with engineered optical properties not found in nature) have shown a great potential to simplify and compactify the footprint of polarization optical devices without bulky optical elements and moving parts. Examples include arbitrary polarization-pair transformation [1], single-shot polarization imaging for classical [2] and quantum [3] light. These works suggest new research directions in polarization optics.

This project aims for developing an integrated all-dielectric metasurface platform for polarization manipulation and detection. There is a scope for numerical design and optimization, cleanroom fabrication, and experimental characterization of metasurfaces for various contexts such as ultra-sensitive polarization deviation monitoring, multifunctional polarization gratings, and multi-photon quantum state transformation. We use machine learning to design and optimize the optical response of the metasurfaces for specific requirements. Potential applications of this project include ultracompact polarization optical elements, sensitive biological imaging, and quantum state manipulation and tomography.

The project is a part of the newly established ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), https://tmos.org.au/. This is an exciting opportunity to contribute to the TMOS mission of developing the next-generation miniaturised optical systems with functionalities beyond what is conceivable today.

[1] ACS Photonics 3, 3015 (2020); [2] Science 365, eaax1839 (2019); [3] Science 361, 1104 (2018).

Required background

Physical optics and Fourier optics.

Knowledge of quantum mechanics and experience in matlab or python coding would be beneficial.

Project suitability

This research project can be tailored to suit students of the following type(s)

Contact supervisor

Zhang, Jihua profile

Other supervisor(s)

Sukhorukov, Andrey profile
Ma, Jinyong profile