Theoretical physics

Much of the theoretical work in the School compliments the experimental programs in areas such as the transport studies in semiconductors, photonics and optical communications.

One of the most exciting areas of modern theoretical physics is the modelling of the behaviour of complex systems such as climate patterns and the turbulent flow of fluids. RSPhysSE is one of the major players in the ARC Research Network for Complex Systems with many of our researchers undertaking research in this field.

The School also has strong research interests in Nonlinear optics and solitons, developing basic theories of solitons for optical systems that including all-optical information transmission lines and ultra-short pulse lasers. This work also extends to the design of specific novel planar and fibre light processing devices, including those with the potential for commercialisation.

Potential student research projects

You could be doing your own research into theoretical physics. Below are some examples of student physics research projects available in our school.

Variational approach to many-body problems

In recent years there was a large boost in development of advanced variational methods which play an important role in analytic and numerical studies of  1D and 2D quantum spin systems. Such methods are based on the ideas coming from the renormalization group theory which states that  physical properties of  spin systems become scale invariant near criticality. One of the most powerful variational algorithms is the corner-transfer matrices (CTM) method which allows to predict properties of large systems based on a simple iterative algorithm.

A/Prof Vladimir Mangazeev

Impact of nuclear structure on dark matter direct detection

Quantum many-body modelling of the atomic nucleus will help us understand how dark matter particles interact with atomic nuclei, as well as how many scattering events we can expect in underground laboratory search for dark matter. 

Professor Cedric Simenel

Continuous gravitational waves: new methods for new discoveries

The next big discovery in gravitational wave astronomy may be a first detection of continuous gravitational waves from rapidly-spinning neutron stars. This projects aims to develop the data analysis methods needed for such a discovery.

Dr Karl Wette, Distinguished Prof Susan Scott

Nuclear magnetism - magnetic moment measurements

This project builds on our established track record of developing novel methods to measure magnetic moments of picosecond-lived excited states in atomic nuclei, and the theoretical interpretation of those measurements. Students will help establish new methodologies to underpin future international research at the world's leading radioactive beam laboratories.

Professor Andrew Stuchbery, Emeritus Professor Tibor Kibedi, Professor Gregory Lane, Dr Brendan McCormick

Please browse our full list of available physics research projects to find a student research project that interests you.