Theoretical physics

Much of the theoretical work in the School compliments the experimental programs in areas such as the transport studies in semiconductors, photonics and optical communications.

One of the most exciting areas of modern theoretical physics is the modelling of the behaviour of complex systems such as climate patterns and the turbulent flow of fluids. RSPhysSE is one of the major players in the ARC Research Network for Complex Systems with many of our researchers undertaking research in this field.

The School also has strong research interests in Nonlinear optics and solitons, developing basic theories of solitons for optical systems that including all-optical information transmission lines and ultra-short pulse lasers. This work also extends to the design of specific novel planar and fibre light processing devices, including those with the potential for commercialisation.

Potential student research projects

You could be doing your own research into theoretical physics. Below are some examples of student physics research projects available in our school.

Atomic ionization in super-strong laser fields

Using methods of quantum many-body theory to describe elementary processes in atoms and molecules interacting with strong electromagnetic fields.

Professor Anatoli Kheifets, Dr Igor Ivanov

Introduction to quantum integrable systems

The aim of this project is to introduce quantum integrable systems which play a very important role in modern theoretical physics. Such systems provide one of very few ways to analyze nonlinear effects in continuous and discrete quantum systems.

A/Prof Vladimir Mangazeev

How does a black hole ring?

We study the numerical waveforms for the gravitational waves emitted during the black hole ringdown stage, implement tools and data analysis frameworks, and analyze the latest gravitational-wave data to estimate black hole properties and test the general theory of relativity.

Dr Lilli (Ling) Sun, Distinguished Prof Susan Scott

Neutron and X-ray imaging/tomography techniques at ANSTO & Australian Synchrotron

This project involves working with scientists from imaging beamlines at the Australian Synchrotron (IMBL, XFM, MCT) and the Lucas Heights nuclear reactor (DINGO) to develop multi-modal, multi-scale, and dynamic imaging and tomography techniques alongside computational imaging scientists from ANU.

Dr Andrew Kingston, Dr Glenn Myers

Please browse our full list of available physics research projects to find a student research project that interests you.