Physics of the nucleus

The School operates the premier facility in Australia for accelerator-based research in physics of the nucleus. These facilities are centred on the 14UD electrostatic heavy-ion accelerator and a new modular superconducting linear accelerator booster. The accelerators feed a variety of experiments and instrumentation, enabling the study of:

  • Fusion and Fission Dynamics with Heavy Ions
  • Nuclear Spectroscopy
  • Nuclear Moments and Hyperfine Fields
  • Perturbed Angular Correlations and Hyperfine Interactions applied to Materials
  • Heavy Ion Elastic Recoil Detection Analysis (ERDA)
  • Accelerator Mass Spectrometry (AMS)

Potential student research projects

You could be doing your own research into the physics of the nucleus. Below are some examples of student physics research projects available in our school.

Exotic nuclear structure towards the neutron dripline

Investigate the properties of exotic nuclei and their impact on fundamental models and creation of the elements when stars explode. 

Dr AJ Mitchell, Professor Gregory Lane

Measuring electric quadrupole moments - the shapes of atomic nuclei

New methods to determine the shapes of atomic nuclei via the measurement of their electric quadrupole moment are being developed. Most nuclei are prolate spheroids - shaped like an Australian Rules football. As well as giving a picture of the nucleus, the quadrupole moment is an important observable to test theory. 

Professor Andrew Stuchbery, Dr AJ Mitchell, Professor Gregory Lane, Mr Ben Coombes

Nuclear batteries: Energy-storage applications of nuclear isomers

Nuclear metastable states, known colloquially as isomers, have energy densities millions of times greater than chemical batteries. This project investigates nuclear pathways for reliably extracting this energy from candidate isotopes on demand. 

Dr AJ Mitchell, Professor Gregory Lane

Measuring and modelling free-ion hyperfine fields

Motivated by exciting prospects for measurements of the magnetism of rare isotopes produced by the new radioactive beam accelerators internationally, this experimental and computational project seeks to understand the enormous magnetic fields produced at the nucleus of highly charged ions by their atomic electron configuration.

Professor Andrew Stuchbery, Emeritus Professor Tibor Kibedi, Dr Brendan McCormick

Please browse our full list of available physics research projects to find a student research project that interests you.