Laser Cleaning is a cutting-edge technique designed for removal of contamination layers from solid surfaces by irradiating the surface with a laser beam. It is a non-contact process, which does not require the use of chemicals or abrasives, eliminating problems of chemical toxicity, corrosive residues, erosion and erasure of surface structure. Commercially available industrial laser cleaning systems use high power nanosecond lasers. However, they deposit considerable heat load into the objects being cleaned, as the primary ablation mechanism is thermally activated. It causes heat related physical and/or chemical changes, surface damage and potentially bulk material property change.
Our team has developed a multi-wavelength Ultrafast Laser Cleaning (ULC) system, combining together several advanced laser technologies: up to km/s laser scanning speed, µm-precise beam positioning, large area processing with telecentric scanning optics, variable spot shape, and spectral analysis of the ablated plume. Based on a new class of powerful ultrafast lasers, ULC is now reaching the so called “cold ablation” regime where high average power can be used without introducing thermal effects. This enables large increases in material throughput at industrially relevant speeds. ULC is an amazing tool to clean and enhance surfaces in a way not possible with any other method.
Faster, safer, more precise, ULC is an ideal alternative for material removal.
Our research program is divided into four streams: