Nuclear and radiation modelling group

Radon control in directional dark matter detectors

Directional dark matter searches provide a way to probe beyond the irreducible ‘neutrino fog’ that limits traditional dark matter experiments. CYGNUS-OZ is part of the global directional dark matter effort, and this project focuses on the critical challenge of radon control in these detectors.

Dr Robert Renz Marcelo Gregorio, Dr Lindsey Bignell, Professor Gregory Lane

Ultra-sensitive radon detection for rare-event physics experiments

Radioactivity from radon is a leading background for dark matter and other rare-event physics experiments. Developing ultra-sensitive radon detection is crucial to improve discovery potential and enable the next generation of breakthroughs in fundamental physics.

Dr Robert Renz Marcelo Gregorio, Dr Lindsey Bignell, Professor Gregory Lane

Advanced detector development for rare event particle physics

Experimental, simulation, and data analysis projects are available to help develop advanced detection technology which will form the basis of a future large particle physics experiment in Australia

Dr Lindsey Bignell, Dr Robert Renz Marcelo Gregorio, Miss Victoria Bashu, Professor Gregory Lane

Simulating cosmic-ray interactions with materials for dark matter and commercial applications

This project uses Geant4 simulations to investigate how naturally occurring cosmic rays interact with materials relevant to physics and environmental research, including NaI(Tl) crystals, gaseous detectors, and soil.

Dr Yiyi Zhong, Dr Lindsey Bignell

Time dependence of nuclear fusion

This project will allow us to understand the time-dependence of quantum tunnelling and nuclear fusion.

Dr Edward Simpson

Machine learning approaches for nuclear fusion reactions

Proton-boron fusion has the potential to deliver limitless clean energy. This project will aims to understand the physics underpinng this important nuclear reaction by developing machine learning approaches to analyse complex reaction probabilities.

Dr Edward Simpson