Professor David McClelland

Position Professor
Department Department of Quantum Science
Physics Education Centre
Office phone 261259888
Email
Office Physics 1 77
Webpage https://physics.anu.edu.au/quantum/...

Frequency distribution over fibre for next generation Gravitational Wave Detectors

We will investigate the possibility to distribute a phase reference over a 100m long optical fibre with a stability of hundreds of nanoradians. If succesfull this solution will be part of a selection process for implementation into the LIGO observatories.

Dr Bram Slagmolen, Professor David McClelland, Dr David Gozzard

Vibration control for optical interferometry

Develop an active vibraiton isolation platform to provide a quiet, small displacement environment for high precision inteferometry.

Dr Bram Slagmolen, Professor David McClelland, Dr Robert Ward

Dual torsion pendulum for quantum noise limited sensing

Construct a small dual tosion pendulum which have their centre of mass co-incide and their rotational axis colinear. Inital diagnostics will be done using shadow sensors.

Dr Bram Slagmolen, Professor David McClelland, Dr Robert Ward

Quantum squeezed states for interferometric gravitational-wave detectors

Using non-classical light states on laser interferometric gravitational-wave detectors, to further enhance the best length measurement devices in the world.

Professor David McClelland, Professor Daniel Shaddock, Dr Bram Slagmolen

Updated:  4 September 2019/ Responsible Officer:  Director, RSPhys/ Page Contact:  Physics Webmaster