Professor David Hinde

Department Department of Nuclear Physics
Qualifications BSc Manc, PhD, FAIP, FInstP, FAA
Office phone (02) 612 52094
Email
Office Nuclear Physics 2 43

Quantum tunnelling and energy dissipation in nuclear collisions

This research project, with both experimental and theoretical angles, is developing a new perspective on the transition from a quantum superposition to effectively irreversible outcomes in quantum collisions.

Professor Mahananda Dasgupta, Dr Edward Simpson, Professor David Hinde

How to create new super-heavy elements

Superheavy elements can only be created in the laboratory by the fusion of two massive nuclei. Our measurements give the clearest information on the characteristics and timescales of quasifission, the major competitor to fusion in these reactions.

Professor David Hinde, Dr Kaushik Banerjee, Dr C├ędric Simenel

Sub-zeptosecond processes in reactions of stable and radioactive weakly-bound nuclei

This project uses novel techniques to investigate reactions of light weakly-bound nuclei, both stable and exotic, which challenge our understanding of nuclear reaction dynamics.

Dr Kaitlin Cook, Professor Mahananda Dasgupta, Professor David Hinde

Updated:  15 January 2019/ Responsible Officer:  Director, RSPE/ Page Contact:  Physics Webmaster