Topological and structural science

Many biologically and technologically important materials ranging from oil-bearing rocks to printing paper have a highly intricate structure involving interconnected labyrinths of pores. The School has several research programs studying the flow properties of these disordered porous media. Improved understanding of the physics of such processes has applications ranging from the petrochemical industries to the design of bubble jet printer inks and papers. The School is a major partner in the CRC for Functional Communication Surfaces. A strong theoretical team and novel experimental facilities such as ultra high resolution computed tomography come together to make the School a leader in this area.

RSPE also undertakes research aimed at understanding the enigmatic processes of long range ordering and self assembly, which for example, enables animals like the sea urchin to construct a skeleton out of polycrystalline elements which collectively exhibit some single crystal properties. Biomineralisation has also many potential commercial applications such as the production of low temperature super ceramics as well as wider scientific implications such as the search for Martian life.

Selected research highlights

Related departments

Potential student research projects

You could be doing your own research into fusion and plasma confinement. Below are some examples of student physics research projects available in RSPE.

Please browse our full list of available physics research projects to find a project that interests you.

This project will address significant problems of feasibility and tunability of novel photonic metadevices aiming to open novel possibilities for a control of light flows topologically protected against scattering losses, energy leaking, or imperfections. 

» Find out more about this project

"Phantoms" are objects used for performance testing and/or calibration of 3D X-ray computed tomography (CT) systems. This project involves designing, 3D printing, and subsequently imaging phantoms at the micro-CT facility of the Applied Maths department.

» Find out more about this project

Develop new methods for quantifying the shape of leaves and explore how these are correlated with their physical and biological properties.

» Find out more about this project

The ANU has constructed an X-ray micro-computed tomography facility with a unique helical scanning configuration that enables tomographic images of extremely high quality to be produced.  This experimental project will work with theoreticians to image the evolution of time-changing samples with unprecented time resolution.

» Find out more about this project

Updated:  17 August 2017/ Responsible Officer:  Director, RSPE/ Page Contact:  Physics Webmaster