Topological and structural science

Many biologically and technologically important materials ranging from oil-bearing rocks to printing paper have a highly intricate structure involving interconnected labyrinths of pores. The School has several research programs studying the flow properties of these disordered porous media. Improved understanding of the physics of such processes has applications ranging from the petrochemical industries to the design of bubble jet printer inks and papers. The School is a major partner in the CRC for Functional Communication Surfaces. A strong theoretical team and novel experimental facilities such as ultra high resolution computed tomography come together to make the School a leader in this area.

RSPE also undertakes research aimed at understanding the enigmatic processes of long range ordering and self assembly, which for example, enables animals like the sea urchin to construct a skeleton out of polycrystalline elements which collectively exhibit some single crystal properties. Biomineralisation has also many potential commercial applications such as the production of low temperature super ceramics as well as wider scientific implications such as the search for Martian life.

Selected research highlights

Related departments

Potential student research projects

You could be doing your own research into fusion and plasma confinement. Below are some examples of student physics research projects available in RSPE.

Please browse our full list of available physics research projects to find a project that interests you.

Develop new methods for quantifying the shape of leaves and explore how these are correlated with their physical and biological properties.

» Find out more about this project

What is a granular material from geometry and physics perspective? We'll try to understand the fundementals of granular materials in this project.

» Find out more about this project

The energy lansdscape of folded spheres, assuming elastic membranes and sticky inner surfaces, will be explored. 

» Find out more about this project

A variety of projects are available that will contribute to the enumeration and characterisation of 3-periodic network structures via the tiling of periodic minimal surfaces and thereby enhance our understanding of self-assembled structures in nature.

» Find out more about this project

Updated:  17 August 2017/ Responsible Officer:  Director, RSPE/ Page Contact:  Physics Webmaster