Available student project - Measurement of optical and mechanical losses of mirror coatings

Research fields

  • Photonics, Lasers and Nonlinear Optics
  • Materials Science and Engineering
Deposition equipment for ion beam sputtering of high quality optical coatings

Project details

Gravitational wave detectors are in many ways the most sensitive instruments ever built and have opened a new window to the universe. The steadily growing number of discoveries helps us develop a better understanding of the universe and probe for exciting new fundamental physics.

The Centre for Gravitational Astrophysics offers a collaborative, diverse, and supportive research environment across the full breadth of gravitational wave discovery. The Centre is a joint effort of RSAA and RSPhys, and hosts a node of the ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav).

Gravitational wave detection has reached the thermal noise limit of optical coating technology: Thermal effects in the mirror coatings drown potential gravitational waves in noise. This has sparked a broad search for novel coating materials, coating topologies, and mitigating technologies. One of the most promising avenues towards future gravitational wave detectors is the use of cryogenically cooled silicon mirrors and 2µm wavelength lasers.

Your goal in this project is to build an experiment that measures the flexing behaviour of mechanical oscillators in vacuum and investigate samples that we produce with in-house coating deposition tools. We are interested in the time constants that determine the amplitude decay of the oscillator modes. You will study the difference in time constants before and after coatings are deposited and extract estimates for the elusive mechanical loss, the material property that is the main cause for thermal noise in mirror coatings.

Required background

A working knowledge and laboratory experience with optics and lasers is recommended. Computational and programming skills (e.g. Python, MATLAB, Finite Element Analysis) are preferred. The project scope can be adjusted according to student level.

Project suitability

This research project can be tailored to suit students of the following type(s)
  • 3rd year special project
  • PhB (1st year)
  • PhB (2nd or 3rd year)
  • Honours project
  • Phd or Masters

Contact supervisor

Eichholz, Johannes profile

Updated:  4 September 2019/ Responsible Officer:  Director, RSPhys/ Page Contact:  Physics Webmaster