Available student project - Optical metamaterials: from Harry Potter to modern technologies

Research fields

  • Photonics, Lasers and Nonlinear Optics
  • Nanoscience and Nanotechnology
Metamaterials can bend the light in an unusual way

Project details

In recent years, metamaterials have attracted significant attention from the scientific community. These artificial materials exhibit exotic properties not normally found in nature. Examples include negative refraction (i.e. light bending in the ‘wrong’ direction), cloaking (as demonstrated by different research groups worldwide) and creation of perfect lenses. In conjunction with plasmonics, metamaterials also offer the possibility of creating sub-wavelength devices that may lead to the sought-after integration of electronic and optical devices on the same chip.

Importantly, in recent years, the research agenda is shifting from fundamental studies to practical applications. In particular the research in metamaterials in focusing on the development of novel metadevices, which incorporate widely tunable functional metamaterials for dynamic light control, sensing and imaging. We are working on the development of ultra-thin metamaterials - called metasurfaces - for the development on the next generation optical components, including beam-shapers, lenses and holograms. We aim to integrate such metasurfaces with electronic components to engineer their properties on demand.

Being a design concept that is highly scalable with frequency, metamaterials can work in the entire frequency range of the electromagnetic spectrum - from microwave to THz to optics. This unique flexibility is attrracting the attention of a number of high-tech companies for the development on the next generation of optical components. It is an exciting time for our research when the new cutting-edge physics can result in exciting new applications.

Required background

Optical Physics (PHYS3057)

Project suitability

This research project can be tailored to suit students of the following type(s)
  • 3rd year special project
  • PhB (2nd or 3rd year)
  • Honours project
  • Phd or Masters

Contact supervisor

Neshev, Dragomir profile
QE II Fellow

Other supervisor(s)

Miroshnichenko, Andrey profile
Research Fellow

Updated:  17 August 2017/ Responsible Officer:  Director, RSPE/ Page Contact:  Physics Webmaster