Potential student research projects

The Research School of Physics & Engineering performs research at the cutting edge of a wide range of disciplines.

By undertaking your own research project at RSPE you could open up an exciting career in science.

Search

Filter projects

Physics of the Nucleus

Nuclear moments and intense hyperfine fields in ferromagnetic media

This project evaluates data at the interface of nuclear, atomic and solid-state physics with a view to discovering new physics and providing reliable data on the magnetic moments of short-lived nuclear quantum states. It assists the International Atomic Energy Agency to provide reliable nuclear data for research and applications.

Professor Andrew Stuchbery

Auger-cascade modelling for targeted cancer therapy

The emission rate of low-energy Auger electrons and X-rays from radiosotopes through the Auger cascade are extremely important for basic science and applications, especially for medical isotopes. The project is aiming to understand the nature of the Auger cascade and develop a new computational model for the research of targeted radioisotopes therapy.

Dr Tibor Kibedi, Professor Andrew Stuchbery

Modelling free-ion hyperfine fields

Motivated by exciting prospects for measurements of the magnetism of rare isotopes produced by the new radioactive beam accelerators internationally, this computational project seeks to understand the enormous magnetic fields produced at the nucleus of highly charged ions by their atomic electron configuration.

Professor Andrew Stuchbery, Dr Tibor Kibedi

Developing a digital data acquisition system for SABRE; Australia's First Dark Matter Detector

This experiment will bring online key experimental hardware for the SABRE dark matter experiment.

Dr Lindsey Bignell, Dr Gregory Lane, Professor Andrew Stuchbery

Modeling the SABRE Dark Matter Detector

This project will develop key aspects of the SABRE dark matter detector model, and investigate the detector's sensitivity to dark matter and backgrounds.

Dr Lindsey Bignell, Dr Gregory Lane, Professor Andrew Stuchbery, Dr Cédric Simenel

Underground Background Measurements for SABRE; Australia's First Dark Matter Detector

This experiment will measure key backgrounds at the SABRE site and investigate implications for the dark matter search.

Dr Lindsey Bignell, Dr Gregory Lane, Professor Andrew Stuchbery, Dr Anton Wallner

Search for supernova-signatures on Earth

Detection of supernova‐produced (radio)nuclides in terrestrial archives gives insight into massive star nucleosynthesis; when and where are heavy elements formed. Direct observation of radioactive nuclides from stars and the interstellar medium would provide first experimental constraints on production rate.s We will use the most sensitive technique, accelerator mass spectrometry.

Dr Anton Wallner

Computing nuclei: numerical solution of the Schrödinger equation

Analytic solutions of real-world quantum mechanics problems are rare, and in practise we must use numerical methods to obtain solutions. This project will give you practical experience in solving the static and time-dependent Schrödinger equations using a computer.

Dr Edward Simpson, Dr Cédric Simenel

Nuclear models in nuclear structure and reactions

Nuclei are complex quantum systems and thus require advanced modelling to understand their structure properties. This project uses such models to interpret experimental data taken at the ANU and at overseas nuclear facilities.

Dr Edward Simpson, Professor Andrew Stuchbery, Dr Cédric Simenel

Measuring free-ion hyperfine fields

This experimental project will characterize the hyperfine fields of ions emerging from target foils as highly charged ions. The data will test theoretical models we are developing, and underpin nuclear magnetism measurements on rare isotopes produced at international radioactive beam facilities such as GANIL (France), ISOLDE-CERN (Switzerland) and NSCL (USA).

Professor Andrew Stuchbery, Dr Tibor Kibedi, Dr Gregory Lane, Mr Timothy Gray

Spectroscopy of radioactive fission fragments

Investigate the properties of radioactive nuclei using spectroscopic techniques. 

Dr AJ Mitchell, Dr Gregory Lane, Professor Andrew Stuchbery

Nuclear lifetimes - direct timing with LaBr3 detectors

The lifetimes of excited quantum states in the atomic nucleus give extremely important information about nuclear structure and the shape of the nucleus. This project will commission a new array of of LaBr3 detectors to measure nuclear lifetimes, with the aim to replace conventional analog electronics with digital signal processing.

Professor Andrew Stuchbery, Dr Gregory Lane, Dr Tibor Kibedi, Mr Aqeel Akber

Sub-zeptosecond processes in reactions of stable and radioactive weakly-bound nuclei

This project uses novel techniques to investigate reactions of light weakly-bound nuclei, both stable and exotic, which challenge our understanding of nuclear reaction dynamics.

Dr Kaitlin Cook, Professor Mahananda Dasgupta, Professor David Hinde

Nuclear reactions for carbon beam therapy

High energy heavy ion beams can be use to effectively treat cancerous tumours, but nuclear reactions of the 12C beam spread the dose, potentially harming healthy tissue. This project will investigate nuclear reaction cross sections relevant to heavy ion therapy.

Dr Edward Simpson

Nucleosynthesis in the laboratory - how elements are formed in stars

A fundamental scientific question is a better understanding of the elemental abundances and the isotopic pattern of our solar system which is a fingerprint of stellar nucleosynthesis. We perform nucleosynthesis in the laboratory at the ANU via a new and powerful tool, accelerator mass spectrometry, to elucidate open questions in these processes.

Dr Anton Wallner

Quantum vibrations in atomic nuclei

We study how atomic nuclei get deformed and vibrate using modern time-dependent quantum simulation codes, advanced 3D visualisation programs, and mathematical tools such as Fourier transforms.  

Dr Cédric Simenel

How to create new super-heavy elements

Superheavy elements can only be created in the laboratory by the fusion of two massive nuclei. Our measurements give the clearest information on the characteristics and timescales of quasifission, the major competitor to fusion in these reactions.

Professor David Hinde, Dr Kaushik Banerjee, Dr Cédric Simenel

Quantum tunnelling and energy dissipation in nuclear collisions

This research project, with both experimental and theoretical angles, is developing a new perspective on the transition from a quantum superposition to effectively irreversible outcomes in quantum collisions.

Dr Cédric Simenel, Professor Mahananda Dasgupta, Dr Edward Simpson, Professor David Hinde

The pair conversion decay of the Hoyle state

The triple–alpha reaction leading to the formation of stable carbon in the Universe is one of the most important nuclear astrophysical processes.  This project is aiming to improve our knowledge of the triple-alpha reaction rate from the direct observation of the electron-positron pair decays of the Hoyle state in 12C.

Dr Tibor Kibedi, Professor Andrew Stuchbery

High precision electron spectroscopy of electric monopole transitions

The project is aiming to develop a high resolution conversion electron spectrometer to study electric monopole transitions in atomic nuclei. 

Mr Jackson Dowie, Dr Tibor Kibedi, Professor Andrew Stuchbery

Nuclear fusion and sub-zeptosecond breakup reactions

Fusion probabilities at high energies are significantly smaller than theoretical predicted, in part due to disintegration of the projectile nucleus into lighter nuclei (breakup) on timescales faster than 10-21 s. This project will help us understand these fast, complex breakup processes and their influence on fusion.

Dr Edward Simpson, Professor Mahananda Dasgupta

Nuclear lifetimes - Doppler broadened line shape method

The measurement of the lifetimes of excited nuclear states is foundational for understanding nuclear excitations. This project will solve a current puzzle in nuclear lifetime measurements based on the Doppler-broadened line shape method and also develop a generalized analysis program for such measurements.

Professor Andrew Stuchbery, Dr Tibor Kibedi, Dr Gregory Lane, Mr Ben Coombes

Transferring quantum particles

When two composite objects (molecules, atoms, atomic nuclei...) collide, they may transfer particles. Understanding how this transfer occurs in quantum mechanics is an important challenge in quantum physics. 

Dr Cédric Simenel, Dr Edward Simpson

Nuclear magnetism - magnetic moment measurements

A novel technique devised at ANU has recently given a breakthrough in the precision with which the magnetic moments of picosecond-lived excited states in sd-shell nuclei (i.e. isotopes of oxygen through to calcium) may be measured. A sequence of precise measurements will be performed to comprehensively test the shell model.

Professor Andrew Stuchbery, Dr Tibor Kibedi, Dr Gregory Lane, Mr Brendan McCormick

SABRE: Experimental Dark Matter Physics

This project will perform key experimental measurements for the SABRE dark matter particle detector and analyse the results.

Dr Lindsey Bignell, Dr Gregory Lane, Professor Andrew Stuchbery, Dr Cédric Simenel

Theory of nuclear fission

Heavy atomic nuclei may fission in lighter fragments, releasing a large amount of energy which is used in reactors. Advanced models of many-body quantum dynamics are developed and used to describe this process.

Dr Cédric Simenel

Crucial fundamental nuclear data for nuclear fusion and nuclear fission

Nuclear data are urgently required in national security, non-proliferation, nuclear criticality safety, medical applications, fundamental science and for the design of advanced reactor concepts (fusion, e.g. ITER), or next generation nuclear power plants (Gen IV, accelerator driven systems, ...).

Dr Anton Wallner

Reactions of weakly-bound and exotic radioactive nuclei

We are developing Austalia's first high energy radioactive beam capability, and now have the world's best capability to reconstruct breakup into charged fragments

Professor Mahananda Dasgupta, Professor David Hinde, Dr Duc Huy Luong

‘Coulomb explosion’ of fast molecular ions

This project will use the powerful 14UD particle accelerator to study the process of 'Coulomb explosion' of fast molecular ions in a foil or gas. The experimental results will be compared with a simple analytical model.

Professor Keith Fifield, Dr Anton Wallner

Updated:  28 June 2017/ Responsible Officer:  Director, RSPE/ Page Contact:  Physics Webmaster