Potential student research projects

The Research School of Physics performs research at the cutting edge of a wide range of disciplines.

By undertaking your own research project at ANU you could open up an exciting career in science.

Filter projects

Some other physics related research projects may be found at the ANU College of Engineering & Computer Science, the Mathematical Sciences Institute and the Research School of Astronomy & Astrophysics

Photonics, Lasers and Nonlinear Optics

Developing ultra-high resolution optical meta-surface sensors

The project aims to develop methods to improve the sensitivity of optical metasurfaces for the detection of chemical and biological markers. By tailoring a high-precision optical interferometric sensing solution to the optical properties of a metasurface under-test, the project will improve the sensitivity of these devices, developing a new range of targeted ultra-precise metasurface sensors.

Dr Chathura Bandutunga , Prof Dragomir Neshev

Harnessing non-classical correlations of exciton-polariton condensates

This project aims to experimentally probe and manipulate the non-classical properties of exciton polariton condensates, which will pave the way for tunable generation of quantum light on a semiconductor chip.

Dr Eliezer Estrecho, Prof Elena Ostrovskaya, Professor Andrew Truscott

Nanowire photodetectors for photonic and quantum systems

Semiconductor nanowires are emerging nano-materials with substantial opportunities for novel photonic and quantum device applications. This project aims at developing a new generation of high performance NW based photodetectors for a wide range of applications.

Professor Lan Fu, Dr Zhe (Rex) Li, Professor Chennupati Jagadish

Machine learning for optics and controls

Optical cavities are widely used in physics and precision measurement.  This project will explore the use of modern machine learning methods for the control of suspended optical cavities.

A/Prof Bram Slagmolen, Dr Jiayi Qin, Professor Robert Ward

Quantum-well nanowire light emitting devices

In this project we aim to design and demonstrate  III-V compound semiconductor based quantum well nanowire light emitting devices with wavelength ranging from 1.3 to 1.6 μm for optical communication applications.

Professor Lan Fu, Dr Zhe (Rex) Li, Professor Hoe Tan, Professor Chennupati Jagadish

Femtosecond laser cleaning of Aboriginal rock art

This project develops safe, damage-free laser cleaning for Australian Indigenous rock art and historic stone monuments, removing contaminants without altering surfaces. Using ultrashort pulse lasers at multiple wavelengths, it combines laboratory optimization and field-applicable procedures, in collaboration with heritage partners and Indigenous custodians, to restore and preserve culturally and visually significant sites.

A/Professor Ludovic Rapp, Dr Ksenia Maximova

Positron interactions with structured surfaces

We are investigating novel effects and applications using positrons and structured surfaces.

Dr Joshua Machacek, Dr Sergey Kruk

Engineering Inter-spacecraft laser links

Inter-satellite laser links are an emerging technology with applications in Earth Observation, telecommunications, security, and, the focus of the CGA space technology group.

Professor Kirk McKenzie, Dr Andrew Wade, Dr Ya Zhang, Ms Emily Rose Rees

Quantum squeezed states for interferometric gravitational-wave detectors

Using non-classical light states on laser interferometric gravitational-wave detectors, to further enhance the best length measurement devices in the world.

Professor Robert Ward, A/Prof Bram Slagmolen, Distinguished Prof David McClelland

Nanowire lasers for applications in nanophotonics

This project aims to investigate the concepts and strategies required to produce electrically injected semiconductor nanowire lasers by understanding light interaction in nanowires, designing appropriate structures to inject current, engineer the optical profile and developing nano-fabrication technologies. Electrically operated nanowire lasers would enable practical applications in nanophotonics.

Professor Chennupati Jagadish, Professor Hoe Tan

Electrically injected metasurface lasers

Metasurfaces have emerged as a cornerstone for next-generation optics and optoelectronics. This project aims to create metasurface lasers from III-V semiconductor thin-films, that are additionally pumped electrically.  

Dr Tuomas Haggren, Professor Hoe Tan, Professor Chennupati Jagadish

Nanowire infrared avalanche photodetectors towards single photon detection

This project aims to demonstrate semiconductor nanowire based infrared avalanche photodetectors (APDs) with ultra-high sensitivity towards single photon detection. By employing the advantages of their unique one-dimensional nanoscale geometry, the nanowire APDs can be engineered to different device architectures to achieve performance superior to their conventional counterparts. This will contribute to the development of next generation infrared photodetector technology enabling numerous emerging fields in modern transportation, communication, quantum computation and information processing.

Professor Lan Fu, Dr Zhe (Rex) Li, Professor Chennupati Jagadish