Gravitational waves detected for second time

Thursday 16 June 2016

Scientists have detected gravitational waves for a second time, caused by the collision of two black holes 14 and eight times the size of the sun.

The team, including scientists from The Australian National University (ANU), glimpsed the black holes orbiting each other 27 times in their last second before coalescing. The signal was 10 times longer than that of the first gravitational wave, which was announced in February this year.

The signal was detected by the two Laser Interferometer Gravitational-Wave Observatory (LIGO) detectors in the United States, said LIGO researcher Professor Susan Scott, from the ANU Research School of Physics and Engineering (RSPE).
“This has cemented the age of gravitational wave astronomy,” she said

“This shows data is going to flow, that will enable us to map a lot more of the Universe than we’ve seen before.”
The violent collision happened approximately 1.4 billion years ago in a distant galaxy. During the journey to Earth, the gravitational waves died down so much that they stretched the LIGO detectors only a tiny fraction of the width of a proton.

Gravitational waves are caused by violent cosmic events such as collisions between stars or black holes, or explosions such as supernovae. They were predicted by Albert Einstein in 1916, but he thought they would be too small for humans to ever detect.

Until gravitational waves were detected, nearly all astronomy had relied on electromagnetic observations – visible light, radio waves, X-rays and so on – said Dr Rob Ward, a LIGO researcher from the ANU RSPE.

“I'd always imagined there would be electromagnetic counterparts in our first discoveries, but instead we found these invisible collisions of black holes purely through the gravitational waves they emitted with no counterparts at all,” Dr Ward said.

“Gravitational wave astronomy is going to revolutionise our understanding of the Universe.”

Gravitational waves promise major insights into the puzzles of dark energy and dark matter. The latest gravitational wave was detected on December 26, 2015.

The ripples reached the LIGO detector in Louisiana in the United States, and 1.1 milliseconds later the identical LIGO detector in Washington state.

The tiny signal was too small to be immediately seen amongst the background noise, but seventy seconds later the super-computer driven data processing systems found a match between the two detectors and alerted researchers of the find.

The chair of the Australian Consortium for Interferometric Gravitational Astronomy, Dr Bram Slagmolen, said he was proud of the contribution Australian scientists had made to the detection.

“There’s massive enthusiasm among Australian scientists, we’ve come up with lots of innovative technology and ideas,” said Dr Slagmolen, from ANU RSPE.

“Advanced LIGO is such a massive machine and it’s fantastic to see it operate in the way we intended,”
Professor David McClelland, from ANU RSPE and Leader of Australia’s Partnership in Advanced LIGO, said that Australian scientists were already working on projects which would enhance the sensitivity of the LIGO detectors.

“Our world-leading quantum optical devices will triple the searchable volume of our universe,” Professor McClelland said.

“We’ll see many more discoveries announced over the next few years.”

The research is published in Physical Review Letters.

» read more

Related news stories

An international team of researchers has made a third detection of gravitational waves, ripples in space and time, in a discovery that provides new insights into the mysterious nature of black holes and, potentially, dark matter. On 4 January this year, the team intercepted the minute gravitational...
An international team of researchers has made a third detection of gravitational waves, ripples in space and time, in a discovery that provides...
An international team of scientists have detected ripples in space and time, known as gravitational waves, from the biggest known black-hole collision that formed a new black hole about 80 times larger than the Sun – and from another three black-hole mergers. The Australian National University...
An international team of scientists have detected ripples in space and time, known as gravitational waves, from the biggest known black-hole...
Scientists from The Australian National University (ANU) and around the world have detected for the first time ripples in space and time, known as gravitational waves, from the collision of two very dense stars, called neutron stars, about 130 million light years away. The international team detected...
Scientists from The Australian National University (ANU) and around the world have detected for the first time ripples in space and time, known...
ANU physicists who worked on the first detection of gravitational waves are among the team that has won two prestigious physics prizes, the $3 million Special Breakthrough Prize in Fundamental Physics and the $500,000 Gruber Prize for Cosmology. Thirteen ANU physicists shared in Special Breakthrough...
ANU physicists who worked on the first detection of gravitational waves are among the team that has won two prestigious physics prizes,...

Updated:  15 January 2019/ Responsible Officer:  Director, RSPhys/ Page Contact:  Physics Webmaster