Hundred million degree fluid key to fusion

Monday 7 March 2016

Zhisong Qu, Mathew Hole and Michael Fitzgerald of the Plasma Theory and Modelling group have solved a puzzle of why their million-degree heating beams sometimes fail, and instead destabilise the fusion experiments before energy is generated.

The solution used a new theory based on fluid flow and will help scientists in the quest to create gases with temperatures over a hundred million degrees and harness them to create clean, endless, carbon-free energy with nuclear fusion. 

"This new way of looking at burning plasma physics allowed us to understand this previously impenetrable problem," said Mr Qu, who was the lead author of the paper published in Physical Review Letters.

This breakthrough is another step towards large scale economical fusion energy production.

Read more on ANU News.

Related news stories

Scientists have for the first time calculated the speed of the most complex nuclear reactions and found they’re really fast: mere zeptoseconds. Being this fast – a zeptosecond is a billionth of a trillionth of a second (10-21 seconds) – makes these nuclear reactions some of the fastest...
Scientists have for the first time calculated the speed of the most complex nuclear reactions and found they’re really fast: mere zeptoseconds. Being...
A plasma thruster, developed at ANU for use on miniature satellites, is being used to look for evidence of life on distant planets – but not in the way you might expect.  The system, called Pocket Rocket, is not powering a satellite to visit planets as they orbit  distant stars. Although...
A plasma thruster, developed at ANU for use on miniature satellites, is being used to look for evidence of life on distant planets – but not in the way you might...
A new measurement of how quickly stars create carbon may trigger a major shift in our understanding of how stars evolve and die, how the elements are created, and even the origin and abundance of the building blocks of life. Physicists at the Australian National University and the University of Oslo...
A new measurement of how quickly stars create carbon may trigger a major shift in our understanding of how stars evolve and die, how the elements...
ANU is poised to provide China with its first Stellarator device, which enables experimental research on magnetically confined plasma that is vital for developing fusion energy. It's part of a transition within the Australian Plasma Fusion Research Facility at ANU to support Australian efforts to work...
ANU is poised to provide China with its first Stellarator device, which enables experimental research on magnetically confined plasma that is vital...

Updated:  15 January 2019/ Responsible Officer:  Director, RSPhys/ Page Contact:  Physics Webmaster