ANU physicist shows Einstein the easy way to solve equation

Friday 2 December 2022 10am

It’s one of Einstein’s defining moments, when his new theory of general relativity solved a longstanding puzzle, a discrepancy in Mercury’s orbit compared with Newtonian mechanics.

But Einstein calculated it the hard way, Dr Michael Hall has shown, in the American Journal of Physics.

With a simple approximation, Dr Hall, from the Department of Fundamental and Theoretical Physics has reduced the calculation of Mercury’s orbit to the same level as Newtonian calculations, that students routinely learn. 

“The resulting approximate orbit equation is very easy to solve,” said Dr Hall, whose paper was featured as a Scilight by the American Institute of Physics:

“Einstein’s basic equation for the orbit of Mercury is not that different from Newton’s. It has one extra term, responsible for the precession.”

Dr Hall’s method approximates that term, which is quadratic, with a linear term.

“I knew that Newton had developed a method for predicting precession effects due to perturbing forces, and I wanted to use this method on Einstein’s equation to simplify the calculation with a sort of ‘Newton-Einstein collaboration’,” Dr Hall said.

During the late 19th Century, astronomers measured a slight change of the orientation of Mercury’s elliptical orbit around the Sun on each orbit. This precession of the perihelion is partially explained by the effects of other planets, but there is a tiny, measurable discrepancy from the predictions of classical mechanics. 

This remained unexplained until Einstein formulated the theory of general relativity, which affects Mercury more than the other planets due to the eccentricity of its orbit and its proximity to the Sun.

Compared to the Newtonian orbit equation, the relativistic version includes an extra term proportional to the inverse radius squared.

However, the math connecting Einstein’s theory to this prediction can be challenging for students learning general relativity. Textbook calculations generally use higher-order perturbation theory or require difficult integration.

“The idea of linearization is to approximate this quadratic term by a linear term, which makes the equation just as easy to solve as Newton’s equation and so provides a simple derivation of the precession of the orbit,” said Hall.

But does this approximation compromise the final result? No, says Dr Hall. Einstein’s methods rely on the approximation that all relevant speeds are small with respect to the speed of light. 

Hall’s method instead relies on the approximation that the distance from the Sun does not change too much over the orbit – it is this that allows replacement of the quadratic term by a linear term.

“In this sense the two methods complement each other. However, they agree precisely in the overlap of their domains, that is, when both approximations hold – as is indeed the case for Mercury orbiting the Sun, which is both low-speed and near-circular,” Dr Hall says.

Simple precession calculation for Mercury: a linearization approach, by Michael J. W. Hall, American Journal of Physics (2022)

Contact

Dr Michael Hall
E: michael.hall1@anu.edu.au

Further reading

read more

Related news stories

Hidden data could pose a threat to quantum encryption

Quantum encryption offers unbreakable codes, but don’t get your encoding equipment from Dr Michael Hall. He’s discovered exactly how to hide code-breaking information in a quantum-encryption system. And he can hide it even more effectively if time flows backwards. His latest study has shown...

Digging a tunnel in a quantum field

When Rosemary Zielinski was offered an honours project to develop a theory of quantum tunnelling, her first thought was, 'but that’s already done – I studied that in second year!' Quantum tunnelling is a well-documented example of quantum weirdness; particles that, according to Newton’s...

New quantum algorithm raises the bar on solution efficiency

Researchers have come up with a radical new algorithm to significantly boost the performance of quantum computers in certain problems, and also show that classical solutions can be just as good in other circumstances. Quantum computers leverage the principles of quantum mechanics which enables them...

Forget everything you know about time – part of it could be all in your mind

Society says time is money; but ANU physicist Peter Riggs says aspects of time might not even be real at all. Article by: Elaine Obran, ANU Reporter   Time is largely a mystery. It stretches and shrinks, slows down, then speeds up unexpectedly. Disappears at one place and then re-emerges...