Tiny camera lens may help link quantum computers to network

Wednesday 19 September 2018

An international team of researchers led by The Australian National University (ANU) has invented a tiny camera lens, which may lead to a device that links quantum computers to an optical fibre network.

Quantum computers promise a new era in ultra-secure networks, artificial intelligence and therapeutic drugs, and will be able to solve certain problems much faster than today’s computers.

The unconventional lens, which is 100 times thinner than a human hair, could enable a fast and reliable transfer of quantum information from the new-age computers to a network, once these technologies are fully realised.

The device is made of a silicon film with millions of nano-structures forming a metasurface, which can control light with functionalities outperforming traditional systems.

Associate Professor Andrey Sukhorukov said the metasurface camera lens was highly transparent, thereby enabling efficient transmission and detection of information encoded in quantum light.

“It is the first of its kind to image several quantum particles of light at once, enabling the observation of their spooky behaviour with ultra-sensitive cameras,” said Associate Professor Sukhorukov, who led the research with a team of scientists at the Nonlinear Physics Centre of the ANU Research School of Physics and Engineering.

Kai Wang, a PhD scholar at the Nonlinear Physics Centre who worked on all aspects of the project, said one challenge was making portable quantum technologies.

“Our device offers a compact, integrated and stable solution for manipulating quantum light. It is fabricated with a similar kind of manufacturing technique used by Intel and NVIDIA for computer chips.” he said.

The research was conducted at the Nonlinear Physics Centre laboratories, where staff and postgraduate scholars developed and trialled the metasurface camera lens in collaboration with researchers at the Oak Ridge National Laboratory in the United States and the National Central University in Taiwan.

The research is published in Sciencehttps://doi.org/10.1126/science.aat8196

Related news stories

An international team of researchers led by ANU is helping to build a safe data superhighway for the highly anticipated quantum internet, which promises a new era of artificial intelligence and ultra-secure communication. Associate Professor Andrey Sukhorukov said the data being shared on this future...
An international team of researchers led by ANU is helping to build a safe data superhighway for the highly anticipated quantum internet, which...
The secure networks, artificial intelligence and new drugs of the future could all find their origins in a crystal, according to research by the 2018 ACT Scientist of the Year Dr Rose Ahlefeldt from The Australian National University (ANU). Dr Ahlefeldt’s research is trying to find the right materials...
The secure networks, artificial intelligence and new drugs of the future could all find their origins in a crystal, according to research by the 2018...
An international team of researchers has developed a technology that manipulates quantum states of light at noise levels that are quieter than the sound of silence. The technology is an important development towards quantum computers, which could solve problems that are impossible for today’s...
An international team of researchers has developed a technology that manipulates quantum states of light at noise levels that are quieter than...
Physicists have manufactured a small can of light and shown it could be used to make optical devices such as tiny sensors and light-based computer chips. The team from ANU, ITMO University and Korea University, trapped light waves for a record length of time inside a cylinder about one hundredth the diameter...
Physicists have manufactured a small can of light and shown it could be used to make optical devices such as tiny sensors and light-based computer...

Updated:  15 January 2019/ Responsible Officer:  Director, RSPhys/ Page Contact:  Physics Webmaster