Departmental Seminar

Metallic, Dielectric and Hybrid Nanostructures for Enhancing the Emission of Quantum Emitters

Dr Angela Barreda Gomez
Friedrich Schiller University, Jena, Germany

Metallic nanoparticles (NPs) are well-known for their strong interaction with electromagnetic radiation. Regarding spontaneous emission enhancement, these nanostructures have been suggested as an alternative to conventional optical cavities, which typically have a limited Purcell effect due to their relatively large mode volume. This means that large Q-factors are necessary in order to achieve high Purcell factors, leading to a narrow linewidth of the cavity resonance and thus a small emission bandwidth. In contrast to this situation, the electromagnetic response of nanoparticle-based resonances is broadband and enables ultra-small mode volume. However, although metallic nanoantennas seem to be a good candidate for emission enhancement, their inherent Ohmic losses limit their applicability and performance. 

On the contrary, NPs made of High Refractive Index Dielectric (HRID) materials exhibit negligible absorption in the VIS-NIR spectral ranges. In addition, they present magnetic response, and can be designed to control the direction of the scattered radiation. Another remarkable difference compared to metallic NPs is that the Q-factor is mainly limited by radiation damping instead of the Joule losses.  

It is the goal of our work to enhance the emission of quantum emitters by means of different configurations: low-loss Mie-resonant nanoantennas supporting complex near- and far-field interference phenomena, hybrid metal-dielectric nanoantennas, dielectric metasurfaces or hybrid photonic-plasmonic cavities.  

Ángela I. Barreda Gómez received the physics degree in 2013, the M.Sc. degree in physics, instrumentation, and environment in 2014 and the Ph.D. degree in 2019 in the University of Cantabria, Spain. She worked as a postdoctoral researcher in a European Project in the group of Prof. Martinez at Polytechnic University of Valencia. She was a postdoctoral Humboldt fellow researcher in the group of Prof. Staude in Friedrich Schiller University Jena. Currently, she works in the same group in the framework of the International Research Training Group (IRTG) 2675 "META-ACTIVE", Her research interests focus on optics and photonics and computational nanooptics.

Updated:  18 August 2022/ Responsible Officer:  Director, RSPhys/ Page Contact:  Physics Webmaster