Dr Lindsey Bignell

Dr Lindsey Bignell
Position
Research Fellow
Department
Nuclear Physics & Accelerator Applications
Office phone
59626
Email
Office
Nuclear Physics 2 29

Advanced detector development for rare event particle physics

Experimental, simulation, and data analysis projects are available to help develop advanced detection technology which will form the basis of a future large particle physics experiment in Australia

Dr Lindsey Bignell, Dr Robert Renz Marcelo Gregorio, Miss Victoria Bashu, Professor Gregory Lane

Simulating cosmic-ray interactions with materials for dark matter and commercial applications

This project uses Geant4 simulations to investigate how naturally occurring cosmic rays interact with materials relevant to physics and environmental research, including NaI(Tl) crystals, gaseous detectors, and soil.

Dr Yiyi Zhong, Dr Lindsey Bignell

Radon control in directional dark matter detectors

Directional dark matter searches provide a way to probe beyond the irreducible ‘neutrino fog’ that limits traditional dark matter experiments. CYGNUS-OZ is part of the global directional dark matter effort, and this project focuses on the critical challenge of radon control in these detectors.

Dr Robert Renz Marcelo Gregorio, Dr Lindsey Bignell, Professor Gregory Lane

Ultra-sensitive radon detection for rare-event physics experiments

Radioactivity from radon is a leading background for dark matter and other rare-event physics experiments. Developing ultra-sensitive radon detection is crucial to improve discovery potential and enable the next generation of breakthroughs in fundamental physics.

Dr Robert Renz Marcelo Gregorio, Dr Lindsey Bignell, Professor Gregory Lane

When dialing an ANU extension from outside the university:
  • (02) 612 XXXXX (within Australia)
  • +61 2 612 XXXXX (outside Australia)
Where XXXXX is the 5 digit extension number you are after.
Anti-Spam notice: The email addresses from this directory are made available to support the academic and business activities of ANU. These email addresses are not published as an invitation to receive unsolicited commercial messages or 'spam' and we do not consent to receipt of such materials. Any messages that are received which contravenes this policy is strictly prohibited, and is also a breach of the Spam Act 2003. The University reserves the right to recover all costs incurred in the event of breach of this policy.

Updated:  15 May 2024/ Responsible Officer:  Director, RSPE/ Page Contact:  Physics Webmaster