Potential student research projects

Search

Advanced project list filtering

Atomic and Molecular Physics

Coherent control of quantum-mechanical systems

The project studies possibility of the coherent control (i.e. manipulating properties of a quantum system, such as charge density, levels populations, etc., using a suitably tailored laser pulse) for a quantum mechanical model of a molecule.

Professor Anatoli Kheifets

Attosecond time-resolved atomic reactions

We apply the most advanced quantum-mechanical modeling to resolve electron motion in atoms and molecules on the atto-second (one quintillionth of a second) time scale.  Our theoretical modeling, based on a rigorous, quantitative description of correlated electron dynamics, provides insight into new physics taking place on the atomic time scale.

Professor Anatoli Kheifets, Dr Igor Ivanov

Atomic ionization in super-strong laser fields

Using methods of quantum many-body theory to describe elementary processes in atoms and molecules interacting with strong electromagnetic fields.

Professor Anatoli Kheifets, Dr Igor Ivanov

Photonics, Lasers and Nonlinear Optics

Localised formations in open systems

Dissipative solitons are generated due to the balance between gain and loss of energy as well as to the balance between input and output of matter. Their existence requires continuous supply of energy and matter that is available in open systems. The model explains variety of phanomena in biology and physics.

Professor Nail Akhmediev, Dr Adrian Ankiewicz, Dr Natasha Devine, Dr. Wonkeun Chang

Extreme events in nature and in a laboratory

The concept of rogue waves was born in nautical mythology, entered the science of ocean waves and gradually moved into other fields: optics, matter waves, superfluidity. This project will allow students to enter the front edge of modern science.

Professor Nail Akhmediev, Dr Adrian Ankiewicz, Dr. Wonkeun Chang, Dr Natasha Devine

Physics of the Nucleus

Theory of nuclear fission

Heavy atomic nuclei may fission in lighter fragments, releasing a large amount of energy which is used in reactors. Advanced models of many-body quantum dynamics are developed and used to describe this process.

Dr Cédric Simenel

Lie algebras in particle physics

A reading course on the connections between the representation theory of Lie groups and the properties of fundamental particles within quantum field theory, using Howard Georgi's "Lie Groups in Particle Physics: from Isospin to Unified Theories".

Mr Hong An Le, Dr Cédric Simenel

Quantum Science and Applications

Causality vs free will in quantum correlations

The strong correlations between entangled quantum systems can be explained only by giving up one of determinism, relativistic locality, or experimental free will. In the latter case, the choice of experimental settings is statistically dependent on hidden system variables. This project examines information properties of such a dependence.

Dr Michael Hall

Quantum tunnelling in many-body systems

Quantum tunnelling is a fundamental process in physics. How this process occurs with composite (many-body) systems, and in particular how it relates to decoherence and dissipation, are still open questions.

Dr Cédric Simenel, Dr Edward Simpson

Theoretical Physics

Coherent control of quantum-mechanical systems

The project studies possibility of the coherent control (i.e. manipulating properties of a quantum system, such as charge density, levels populations, etc., using a suitably tailored laser pulse) for a quantum mechanical model of a molecule.

Professor Anatoli Kheifets

Introduction to quantum integrable systems

The aim of this project is to introduce quantum integrable systems which play a very important role in modern theoretical physics. Such systems provide one of very few ways to analyze nonlinear effects in continuous and discrete quantum systems.

Dr Vladimir Mangazeev

Causality vs free will in quantum correlations

The strong correlations between entangled quantum systems can be explained only by giving up one of determinism, relativistic locality, or experimental free will. In the latter case, the choice of experimental settings is statistically dependent on hidden system variables. This project examines information properties of such a dependence.

Dr Michael Hall

New connections between classical and quantum field theories

The standard correspondence principle implies that quantum theory reduces to classical theory in the limit of the vanishing Planck constant. This project is devoted to a new type connection between quantum and classical systems which holds for arbitrary finite values of the Planch constant.

Professor Vladimir Bazhanov

Combinatorics and integrable systems

We will study links between integrable systems in statistical mechanics, combinatorial problems and special functions in mathematics. This area of research has attracted many scientist's attention during the last decade and revealed unexpected links to other areas of mathematics like enumeration problems and differential equations.

Dr Vladimir Mangazeev, Professor Vladimir Bazhanov

New trends in separation of variables

A separation of variables is a standard technique in classical mechanics which allows to reduce a complicated dynamics with many degrees of freedom to a set of one-dimensional problems. Surprisingly this method finds its natural generalization in the theory of quantum integrable systems. This project aims to study such systems and apply results to the theory of special functions in one and several variables.

Dr Vladimir Mangazeev

String theory and integrable systems

This project aims to develop and employ the full power of the theory of integrable quantum systems to new models of quantum many-body spin systems in string theory.

Professor Vladimir Bazhanov

Mathematical Aspects of Conformal Field Theory

Conformal Field Theory (CFT) in two-dimensions describes physics of the second order transitions in statistical mechanics and also plays important role in string theory, which is expected to unify the theory of strong interaction with quantum gravity. The project aims to explore and further develop mathematical techniques of CFT.  

Professor Vladimir Bazhanov, Dr Vladimir Mangazeev

Quantum tunnelling in many-body systems

Quantum tunnelling is a fundamental process in physics. How this process occurs with composite (many-body) systems, and in particular how it relates to decoherence and dissipation, are still open questions.

Dr Cédric Simenel, Dr Edward Simpson

Attosecond time-resolved atomic reactions

We apply the most advanced quantum-mechanical modeling to resolve electron motion in atoms and molecules on the atto-second (one quintillionth of a second) time scale.  Our theoretical modeling, based on a rigorous, quantitative description of correlated electron dynamics, provides insight into new physics taking place on the atomic time scale.

Professor Anatoli Kheifets, Dr Igor Ivanov

Variational approach to many-body problems

In recent years there was a large boost in development of advanced variational methods which play an important role in analytic and numerical studies of  1D and 2D quantum spin systems. Such methods are based on the ideas coming from the renormalization group theory which states that  physical properties of  spin systems become scale invariant near criticality. One of the most powerful variational algorithms is the corner-transfer matrices (CTM) method which allows to predict properties of large systems based on a simple iterative algorithm.

Dr Vladimir Mangazeev

Atomic ionization in super-strong laser fields

Using methods of quantum many-body theory to describe elementary processes in atoms and molecules interacting with strong electromagnetic fields.

Professor Anatoli Kheifets, Dr Igor Ivanov

Theory of nuclear fission

Heavy atomic nuclei may fission in lighter fragments, releasing a large amount of energy which is used in reactors. Advanced models of many-body quantum dynamics are developed and used to describe this process.

Dr Cédric Simenel

Stochastic dynamics of interacting systems and integrability

There are many interesting physical statistical systems which never reach thermal equilibrium. Examples include surface growth, diffusion processes or traffic flow. In the absence of general theory of such systems a study of particular models plays a very important role. Integrable systems provide examples of such systems where one can analyze time dynamics using analytic methods.

Dr Vladimir Mangazeev

High energy scattering in gauge and string theories

It appears that the scattering amplitudes in Quantum Chromodynamics (theory of strong interactions) can be exactly calculated in certain limiting cases (e.g. in the so-called multi-Redge kinematics). This is possible due to remarkable connections of this problem to the theory of integrable systems based on the Yang-Baxter equation. 

Professor Vladimir Bazhanov

Localised formations in open systems

Dissipative solitons are generated due to the balance between gain and loss of energy as well as to the balance between input and output of matter. Their existence requires continuous supply of energy and matter that is available in open systems. The model explains variety of phanomena in biology and physics.

Professor Nail Akhmediev, Dr Adrian Ankiewicz, Dr Natasha Devine, Dr. Wonkeun Chang

Exact Bohr-Sommerfeld quantisation and Conformal Field Theory

It is well known that the quasiclassical quantisation of the harmonic oscillator leads to its exact quantum mechanical spectrum. Remarkably, this result can be generalized to various anharmonic systems via mysterious connections to Conformal Field Theory.

Professor Vladimir Bazhanov

Extreme events in nature and in a laboratory

The concept of rogue waves was born in nautical mythology, entered the science of ocean waves and gradually moved into other fields: optics, matter waves, superfluidity. This project will allow students to enter the front edge of modern science.

Professor Nail Akhmediev, Dr Adrian Ankiewicz, Dr. Wonkeun Chang, Dr Natasha Devine

Lie algebras in particle physics

A reading course on the connections between the representation theory of Lie groups and the properties of fundamental particles within quantum field theory, using Howard Georgi's "Lie Groups in Particle Physics: from Isospin to Unified Theories".

Mr Hong An Le, Dr Cédric Simenel

Updated:  17 August 2017/ Responsible Officer:  Head of Department/ Page Contact:  Physics Webmaster