Dr Michael Hall

Dr Michael Hall
Position
Honorary Senior Lecturer
Department
Department of Theoretical Physics
Qualifications
BSc(Hon), MSc, PhD
Email
Office
Oliphant 4 03

Research interests

 Foundations of quantum mechanics, quantum communication and measurement, Bell inequalities, time observables, open quantum systems.

Books

 [1]        Ensembles on Configuration Space: Classical, Quantum and Beyond

           M.J.W. Hall and M. Reginatto   (Springer, Switzerland, 2016)

The dynamics of ensembles on configuration space is shown to be a valuable tool for unifying the formalisms of classical and quantum mechanics, for deriving and extending the latter in various ways, and for addressing the quantum measurement problem. 

A description of physical systems by means of ensembles on configuration space can be introduced at a very fundamental level: the basic building blocks are a configuration space, probabilities, and Hamiltonian equations of motion for the probabilities. The formalism can describe both classical and quantum systems, and their thermodynamics, with the main difference being the choice of ensemble Hamiltonian.

Furthermore, there is a natural way of introducing ensemble Hamiltonians that describe the evolution of hybrid systems; i.e., interacting systems that have distinct classical and quantum sectors, allowing for consistent descriptions of quantum systems interacting with classical measurement devices, and quantum matter fields interacting gravitationally with a classical spacetime.

                                                                                                                 

[2]        General Relativity: an introduction to black holes, gravitational waves, and cosmology

               M.J.W. Hall   (Morgan & Claypool, USA, 2018)

General Relativity

This concise textbook begins with a review of special relativity and tensors and then develops the basic elements of general relativity — a beautiful theory that unifies special relativity and gravitation via geometry — with applications to the gravitational deflection of light, global positioning systems, black holes, and cosmology. The recent detection of gravitational waves by the Nobel-prize winning LIGO collaboration is described, and the book closes with another recent Nobel-prize winning discovery: our accelerating Universe.

Based on a set of 18 lectures delivered over the past five years, the book provides readers with a solid understanding of the underlying physical concepts; an ability to appreciate and in many cases derive important applications of the theory; and a grounding for those wishing to pursue their studies further. A range of questions are included at the end of each chapter, and occasional ‘asides’ make connections between general relativity and other topics.

 

     List of Errata (as at June 2018):

  • Eq. (4.15): the second xβ should be xα.
  • Eq. (A.9): the first equation should read LTGL = G.
 

ScienceWise research articles

ScienceWise Magazine - How much free will do we have?
When dialing an ANU extension from outside the university:
  • (02) 612 XXXXX (within Australia)
  • +61 2 612 XXXXX (outside Australia)
Where XXXXX is the 5 digit extension number you are after.
Anti-Spam notice: The email addresses from this directory are made available to support the academic and business activities of ANU. These email addresses are not published as an invitation to receive unsolicited commercial messages or 'spam' and we do not consent to receipt of such materials. Any messages that are received which contravenes this policy is strictly prohibited, and is also a breach of the Spam Act 2003. The University reserves the right to recover all costs incurred in the event of breach of this policy.

Updated:  17 August 2017/ Responsible Officer:  Head of Department/ Page Contact:  Physics Webmaster