Potential student research projects

The Research School of Physics & Engineering performs research at the cutting edge of a wide range of disciplines.

By undertaking your own research project at RSPE you could open up an exciting career in science.

Filter projects

Materials Science and Engineering

Electron scattering from surfaces at high energies

The project aims at establishing the possibilities of high-energy electron scattering in the analysis of thin layers. 

A/Prof Maarten Vos

Soft Condensed Matter: Molecules made by Threading

Of great recent interest is the subject of rotaxanes.  Rotaxanes are molecules  where one or more ring
components is threaded onto an axle that is capped on both ends with stoppers to prevent the rings from
falling o ff. These systems exhibit complex and fascinating physics.

Professor David Williams

Investigating extreme environments using diamond anvil cells

High pressure diamond anvil cells often use a gas or salt solids a form of pressure medium. However, the effect of being squeezed with such materials is unknown for many systems including the novel forms of amorphous silicon, germanium and carbon studied by this ANU-based group.

Prof Jodie Bradby

Nano-bubble formation in fusion relevant materials

Fusion energy promises millions of years of clean energy, but puts extreme stress on materials. This research will resolve scientific issues surrounding plasma-material interactions to guide and facilitate development of future advanced materials for fusion reactors.

Dr Cormac Corr, A/Prof Patrick Kluth, Dr Matt Thompson

Organic-inorganic perovskite materials for high performance photovoltaics

In this project, we will characterise actual device solar cell structures with electron microscopy techniques and seek to understand the microscopic effects behind the device performance and reliability

A/Prof Jennifer Wong-Leung

Mechanical properties of plant cells

This project aims to investigate how the mechnical properties of plant cells change with 'poking' from an external source. In nature the poking is by a pathogen. We mimic this effect with a diamond tip.

Prof Jodie Bradby, Ms Toby Hendy

Nuclear moments and intense hyperfine fields in ferromagnetic media

This project evaluates data at the interface of nuclear, atomic and solid-state physics with a view to discovering new physics and providing reliable data on the magnetic moments of short-lived nuclear quantum states. It assists the International Atomic Energy Agency to provide reliable nuclear data for research and applications.

Professor Andrew Stuchbery, Mr Timothy Gray, Mr Ben Coombes, Mr Brendan McCormick

Wave dispersion in stringed instruments: What makes tuning a piano so hard?

Ideal strings have wave speeds that are identical for all frequencies.  In real life, strings have some stiffness that makes higher frequency waves are faster.  This means building and tuning some stringed instruments, like pianos, is very tricky. This project aims to accurately measure wave speeds on piano strings.

Dr Ben Buchler

3D phantoms for X-ray micro-tomography

"Phantoms" are objects used for performance testing and/or calibration of 3D X-ray computed tomography (CT) systems. This project involves designing, 3D printing, and subsequently imaging phantoms at the micro-CT facility of the Applied Maths department.

Dr Andrew Kingston, Dr Glenn Myers, Prof Adrian Sheppard, Prof Timothy Senden

Some other physics related research projects may be found at the ANU College of Engineering & Computer Science and the Research School of Astronomy & Astrophysics

Updated:  29 April 2019/ Responsible Officer:  Director, RSPE/ Page Contact:  Physics Webmaster