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Abstract

One can locate incoherent sources of light even when they are very close together
within an error bound. This thesis contributes to knowledge by presenting progress
towards experimentally realising the super-resolution of two incoherent point
sources of light, using Fisher information gleaned through image-inversion interfer-
ometry measurements. The diffraction limit has been a limiting construct in optical
physics for centuries without it being a fundamental physical law. This study is
important because it highlights what rich knowledge is within reach while still
working with optical wavelengths.

Techniques in fluorescence microscopy previously bounded by Rayleigh’s criterion
can be enhanced using interferometry, enabling the non-destructive study of smaller
and smaller biological samples. At the other end of the length scale, astrophysical
applications include resolving binary star systems and discovering exoplanets.
What is common in all these cases is that localisation is possible using quantum
estimation theory even if the point spread function for each incoherent source is
unable to be obtained.

Here we tackle a experimental super-resolution technique, superlocalisation by
image inversion interferometry, alongside advances in construction of optical
devices that can act as light sources with sub-Rayleigh separations. Beyond the
successful operation of an image-inversion interferometer, future work in this
sphere may add in a directional element to this separation through interferometry
in multiple dimensions.
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Chapter 1

Introduction

You want a revelation / You want to get it right /
But it’s a conversation / I just can’t have tonight /
You want a revelation / Some kind of resolution /
Tell me what you want me to say.

No Light, No Light, Florence + The Machine

Can you see this? Can you see that? The individual leaves on a tree? The road
name on that sign? The tail lights of a car speeding off into the night? Two tail
lights? Are you sure – don’t they now appear as just one bright red blur?

What it means to see something has been pondered for centuries. We can see stars
light years away with the naked eye, but we are unable to recognise a friend until
they are much much closer than that, only a hundred metres away. Quantifying
these differences in vision was the aim of scientists Ernst Abbe, and later, Lord
Rayleigh. Humans are quite good at spotting single points (acuity) but there is
a limit to our ability to distinguish things that are closer together (resolution).[1]
Figure 1.1 demonstrates the difference between clearly resolved, just resolved, and
unresolved points. Our vision proved to be the motivation for Abbe to develop
a relationship that would quantify this limit – the diffraction limit – for optical
instruments such as microscopes. For the visible light that we are all so familiar
with, this limit is about 200 nm, the size of a big virus or quite a small bacteria.
Practically, this means that when a specimen is viewed through a conventional
microscope, which uses optical wavelengths to illuminate a sample, you might be
able to see that there was something there, but you would not be able to make out
the features that identify it as a certain type of virus or any other fine structure.

The diffraction limit is known to be dependent on wavelength. Electrons with
energies of only a few thousand electron volts have a much shorter wavelength,
and so can reveal greater detail. This is exploited in scanning electron microscopes.
However, electron microscopy requires samples to be conducting to allow the
charge to escape. This means biological samples have to be coated in a conductive
material such as carbon or gold. This is may obscure fine details, or worse, destroy a

1



CHAPTER 1. INTRODUCTION 2

a) b) c)

Figure 1.1: As two point sources of light are brought closer and closer together, it becomes increas-
ingly difficult to resolve them individually: a) shows two well resolved points, b) we
are just able to resolve the points by eye, and c) the overlap of the profiles of the two
sources is too great to resolve them.

delicate sample. The limit to the resolving power of electron microscopes is around
two nanometres, depending on the microscope.[2] The challenge is to develop a
method of examining the smallest of things without damaging them.

The research groups of Eric Betzig, Stefan Hell, and W.E. Moerner independently
answered this challenge, shattering the belief that the diffraction limit could not
be overcome. The two techniques in superresolved fluorescence microscopy – or
more properly, nanoscopy – developed by these scientists saw them awarded the
2014 Nobel Prize in Chemistry.[3] Creatively illuminated biological samples enabled
resolutions far better than 200 nm to be reached.[3]

Figure 1.2: Images of a lysosomal membrane. This is from one of Betzig’s key publications that
saw him share in the 2014 Nobel Prize in Chemistry. A shows an image of the
membrane with conventional optical microscopy techniques. In B, C and D the power
of fluorescence microscopy is exhibited in stunning fashion. [4]

Figure 1.2 shows the power of Eric Betzig’s technique in imaging a lysosomal
membrane. This particular method worked by connecting fluorescent proteins,
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such as the ubiquitous green fluorescent protein (GFP), to samples of bacteria.[4]
These proteins then became the light sources for the image. It is hard to determine
the exact intensity profile of a light source; it is much easier to pinpoint the
centre of a point source of light when there are not any other sources nearby.
By shining an ultraviolet (UV) light onto the bacteria, some of these GFPs will
emit green light, but only some of them, and it is random which ones do emit
the light each time they are exposed to UV. The optical microscope images the
positions of these proteins, indicated by the brightest spots of green light. The
UV light is turned off, the fluorescence dies, the light is turned on again, and
a different ensemble of green spots is activated. By repeating this process and
layering all the images, a ‘join-the-dots’ picture of the bacteria is produced at
much higher resolution than a single optical photo of the naked bacteria. This is
single-molecule microscopy, pioneered by Betzig and Moerner.[4] Stefan Hell’s
experiment in stimulated emission depletion microscopy[5] also relied extensively
upon knowing where the fluorescence from the sample was originating.

In this way, single-molecule microscopy and stimulated emission depletion mi-
croscopy are both techniques that achieve super-resolution but do have constraints.
For the former, it is that every time a ‘layer’ image is taken, the active proteins
still have to be more than 200 nm apart in order to be resolved. For the latter, it
is that a laser can be focused to a spot size of diameter equal to about half the
laser’s wavelength, and no smaller: a spot size of about 200nm. The light from
active GFPs is also incoherent, meaning that there are many fluctuations in the
amplitude and phase of the light, so it is stochastic. Multiple points fluorescing
at the same time complicates matters: photon counting statistics can be used to
localise these points, but the error blows up the closer the point sources become.
This is known as Rayleigh’s curse, a term coined by Mankei Tsang’s Quantum
Measurement Group at the National University of Singapore.[6]

The theoretical and simulation work of Tsang and company in the area of quantum
super-resolution provides the impetus for this current project. They have studied
the quantum Cramér-Rao lower bound (CRLB) for the case of two incoherent point
sources.[6] This is a bound on the mean square error of an estimator.1 The mean
square error is inversely proportional to the Fisher information of an estimator. A
small variance indicates a good estimator and that is why Fisher information is
exactly that: information. Here the data being analysed are the detected photons
from two incoherent point sources and the parameter of interest is the distance
separating the point sources. Tsang et al. found the CRLB unwavering even as
the point sources are brought closer and closer, meaning that an estimate of the
separation can always be produced within a finite error.[6] In short, experiments
which maximise the Fisher information enable the locations of the point sources
of light to be estimated with accuracy far greater than the diffraction limit would
suggest.

Another important example of point sources of light being too close together to

1An estimator is simply a function for generating an estimate of a parameter from a data set.
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resolve2 is found at the other end of the length scale to microscopy: astronomy.
Take the case of two stars, or a star and an exoplanet. When observed through a
telescope, these objects may appear as one faint spot. The astronomer asks “Is that
one bright star or two less bright stars close together? How far apart are the stars?
How can we estimate the separation between the stars if we do not even know
if there are stars plural?” Such questions motivated the development of theories
in statistical optics: photodetection in the case of dim sources, binary hypothesis
testing (how do we decide whether there is one source of light or two, and with
what certainty?), and the resolution of incoherent point sources.

Figure 1.3: Luhman 16, a binary star system consisting of two brown dwarf stars. The large image
is from NASA’s WISE. The inset is from GMOS. This image is at a much higher
resolution to the main picture, with the two stars clearly distinguishable.[7]

A further idea in astronomy is that of combining the data from two or more
telescopes that are a distance apart in a way that gives equivalent resolving power to
a telescope the size of the longest distance between any of the individual telescopes.
Such techniques in interferometry have been employed at radio, and more recently,
optical wavelengths, demonstrating the power of interferometry to yield additional
information. Figure 1.3 shows a binary star system imaged through a single
telescope aperture, the Wide-field Infrared Survey Explorer (WISE) space telescope,
and the same system pictured through the Gemini Multi-Object Spectrograph
(GMOS). GMOS combines data from the twin Gemini telescopes: a much higher
resolution image is the result, allowing the two stars to be seen. Future imaging
techniques in astronomy could make use of a nulling interferometer so that much
of the brighter star’s light can be cancelled out or “nulled”.[8] The construction
of a nulling interferometer is very similar to a Mach-Zehnder interferometer, but

2From where we are, anyway.
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with a π phase shift in one arm. This would involve very similar statistics to those
outlined by Tsang et al. with the possibility of uncovering numerous exoplanets.

An experimental proposal that builds on these ideas by combining the delicacy
of interferometry with the ambit of mathematical statistics is superlocalisation
via image inversion interferometry (SLIVER).[6] Image inversion interferometry
is along a similar line to nulling interferometry: it destructively interferes any
symmetric components of the fields from the sources but preserves light travelling
in the off-axis direction (asymmetric), which then appears as interference fringes.
Analysing these fringes enables localisation of the point sources. In this work I
will address the construction of SLIVER to enable the super-resolution of points
of incoherent green light. I also present work resulting in the fabrication of small
optical devices, used to create point sources with separations on the order of
microns.

From here, the structure of the thesis is as follows:

• Chapter 2 introduces a range of background theory, spread across several
different areas, namely mathematical statistics, statistical optics, and quantum
information theory.

• Chapter 3 examines interferometry and the theory behind the experimental
proposal in greater detail, while also reviewing progress in image inversion
interferometry and other super-resolution techniques driven by estimation
theory.

• Chapter 4 details the fabrication of the small optical devices utilised in the
experiment.

• Chapter 5 reports progress towards realising SLIVER.

• Chapter 6 describes future optical adventures made possible through the
SLIVER technique. Conclusions from the image inversion interferometer
experiment and the study of the fabrication process are presented here.

The diffraction limit is a state of mind.
- W.E. Moerner [9]



Chapter 2

Background theory

This chapter covers elementary material from several areas of statistics and optics.
It aims to give a thorough background to which later chapters can refer, whilst
also ensuring the reader feels equipped for tackling a problem that lies at the
intersection of optics, statistics and quantum information theory: superresolution.
We start with estimation theory in 2.1 before moving to quantum applications of
estimation theory in 2.2. An initial dose of statistical optics is provided in 2.3. 2.4
deals with photodetection, the measurement process so crucial to the experimental
work conducted for this project. In 2.5 different resolution limits are examined and
the specific problem of incoherent point sources is introduced.

2.1 Estimation Theory

Estimation theory, a branch of mathematical statistics, is applied to many disciplines
that depend on signal processing. Its primary concern is extracting information in
the presence of random noise.[10] As the legendary Carl Helstrom puts it,

Information about the world is acquired by observation and measure-
ment, the results of which are subject to error. One would like to think
it could be eliminated if only one built elaborate enough instruments
and took sufficient pains. All efforts to be free of error will, however,
finally reach a bound set by nature’s underlying chaos ... Acquiring
information about a physical entity or system involves either decision
or estimation ... hypotheses and parameters exist and signify in the
context of some theory about the system. That theory also describes the
sources of the uncertainty or error that corrupts the observations. The
irreducibly minimum component of error in decisions and estimates
is discovered by analysing the decision or estimation procedures that
minimize some convenient measure of the average amount of error.[11]

A probability density function (PDF) may be described in terms of one or more

6
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parameters. At the heart of estimation theory is the problem of inferring an
unknown parameter θ in terms of the data x = x[0], x[1], . . . , x[N − 1] of a random
variable X.1 An estimator θ̂ is an inversion that returns θ and is performed by a
function g:2

θ̂ = g(x[0], x[1], . . . , x[N − 1]) (2.1)

The inversion is not necessarily unique, accurate or precise; hence, estimation
theory also seeks to calculate uncertainties of estimates.

This introduction to estimation theory is supported by many course materials
from different institutions available online ([12, 13, 14]). In particular, I would
like to acknowledge Associate Professor Songfeng Zheng of Missouri State for
generously sharing his excellent notes ([14]), which inspired the approach taken in
the following subsections.

2.1.1 Minimum Variance Unbiased Estimation

From the familiar standpoint of conditional probability,3 p(x|θ) is read as ‘the
probability of the data taking the values x given the parameter has a value θ’.
In estimation theory, we turn this around and read it as ‘the likelihood of the
parameter having the value θ given the data x’. L(θ|xi) is the likelihood function,
which is a family of probability distributions over xi. Each member of the family
is a function of a specific parameter θ with the data held constant xi = x, so the
numerical value of L(θ0|x) = p(x|θ0), which goes some way towards explaining
why the words “probability” and “likelihood” are interchangeable colloquially. The
integral of the likelihood over all possible θ does not necessarily equal one, whereas
the definition of a PDF is a nonnegative function that when integrated across all x
equals one.

An unbiased estimator is one which satisfies E[θ̂] = θ, where the expectation (and
all others in this section unless specified otherwise) would be performed with
respect to the true distribution p(x|θ0).As explained above, this is interchangeable
with likelihood function of θ0: L(θ0|x). In more physical terms, an unbiased
estimator is an accurate measurement.[12, 13, 14]

The mean squared error (MSE) defines the optimality of an estimator

mse[θ̂] = E[(θ̂ − θ)2] = var(θ̂) + b(θ)2 (2.2)

where the bias b(θ) = E[θ̂]− θ measures the precision of the measurement. Theoret-
ically, an accurate and precise measurement would be represented by an estimator
with zero bias and minimal MSE. This would be the minimum variance unbiased
(MVU) estimator.[12, 13, 14]

1Here we use uppercase for variables and lowercase for the data corresponding to that variable.
2θ0 is the true value of the constant parameter θ. θ̂ is a function.
3There are several warring tribes of statisticians and not all of them agree with what follows.
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2.1.2 Fisher information

How much information can x provide about θ?

Intuitively, if something is unlikely to happen, a specific set of conditions must
have been in place for it to happen: unlikely events contain more information than
likely ones. For a random variable X, which is described by a PDF dependent on
a parameter θ with true value θ0, the likelihood function would be a maximum
at θ = θ0, or equivalently, the derivative of the log-likelihood function would be
zero. The logarithm is monotonically increasing; therefore, the maximum of the
log-likelihood occurs at the same point as the maximum of the likelihood. This is
the basic principle of maximum likelihood estimation.[12, 13, 14]

The log-likelihood function is defined as

l(θ|x) = log L(θ|x) (2.3)

l′(θ|x) = ∂

∂θ
(log L(θ|x)) = L′(θ|x)

L(θ|x) . (2.4)

Choosing l over L often makes for simpler calculations.

A flat likelihood function says that any value of θ is equally likely for the outcome
x. We interpret a steep gradient in the likelihood function to mean that one value is
much more likely than the others; hence, if [l′(θ|X)]2 is large, the random variable
provides much information about θ. [l′(θ|x)]2 is a measure of the amount of
information provided by X; since X is a random variable, we find the average of
[l′(θ|x)]2. This is the Fisher information for θ contained in the random variable
X:[12, 13, 14]

I(θ) = E
[[

l′(θ|x)
]2
]
=
∫ [

l′(θ|x)
]2 L(θ|x)dx. (2.5)

Although we may have replaced the PDF with the equivalent function L(θ|x) (we
do not know the true value θ0) to make the next few derivations simpler, we have
still integrated over x. The Fisher information is the maximal statistical information
regarding the parameter θ which can be extracted from the data set. We now find
another two equivalent definitions of the Fisher information. To do this, we need
the following results: ∫

L′(θ|x)dx =
∂

∂θ

∫
L(θ|x)dx = 0∫

L′′(θ|x)dx =
∂2

∂θ2

∫
L(θ|x)dx = 0

∴ E
[
l′(θ|x)

]
=
∫

l′(θ|x)L(θ|x)dx

=
∫ L′(θ|x)

L(θ|x) L(θ|x)dx

= 0

(2.6)
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We combine (2.5) with (2.6) to obtain a second definition of the Fisher
information:[14]

I(θ) = E
[[

l′(θ|x)
]2
]
−
(
E
[
l′(θ|x)

])2
= var[l′(θ|x)]. (2.7)

Some tactful rearranging of the second derivative of the log-likelihood provides a
third definition of the Fisher information:[14]

l′′(θ|x) = ∂

∂θ

(
L′(θ|x)
L(θ|x)

)
=

L′′(θ|x)L(θ|x)− (L′(θ|x))2

(L(θ|x))2

=
L′′(θ|x)
L(θ|x) −

(
l′(θ|x)

)2

∴ E
[
l′′(θ|x)

]
=
∫ (L′′(θ|x)

L(θ|x) −
(
l′(θ|x)

)2
)

L(θ|x)dx

=
∫

L′′(θ|x)dx−E
[
[l′(θ|x)]2

]
= −I(θ).

(2.8)

The Fisher information for a sample of size n, X1, X2, . . . , Xn, can be determined
from the joint PDF, which is

pn(x̃|θ) =
n

∏
i=1

p(xi|θ). (2.9)

A similar definition exists for the joint likelihood L(θ|x̃), which leads to the joint
log-likelihood:

ln(θ|x̃) = log Ln(θ|x̃)

=
n

∑
i=1

log L(θ|xi)

=
n

∑
i=1

l(θ|xi).

(2.10)

It can be shown easily that

l′n(θ|x̃) =
L′n(θ|x̃)
Ln(θ|x̃)

(2.11)

The Fisher information is then

In(θ) = E
[
[l′n(θ|X̃)]2

]
=
∫
· · ·

∫
[l′n(θ|x̃)]2Ln(θ|x̃)dx1 . . . dxn (2.12)

Adopting a similar strategy to that used to find the Fisher information for one
observation (see (2.6)), we have

In(θ) = var
[
l′n(θ|X̃)

]
(2.13)
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In(θ) = −E
[
l′′n (θ|X̃)

]
(2.14)

From the definition of ln(θ|x̃) it follows that

l′′n (θ|x̃) =
n

∑
i=1

l′′(θ|xi)

∴ In(θ) = −E

[
n

∑
i=1

l′′(θ|Xi)

]

= −
n

∑
i=1

E
[
l′′(θ|Xi)

]
= n I(θ)

(2.15)

The Fisher information in a random sample of size n is simply n times the Fisher
information in a single observation.[12, 13, 14]

2.1.3 Cramér-Rao Lower Bound

How do we use Fisher information to determine the lower bound for the variance
of an estimator of the parameter θ?

Let θ̂ = g(X1, . . . , Xn) = g(X̃) be an arbitrary estimator of θ, with E[θ̂] = m(θ) and
the assumption that the variance of θ̂ is finite. Let us consider the random variable
l′n(θ|X̃) and recall E

[
l′n(θ|X̃)

]
= 0 (regularity condition). Therefore the covariance

between θ̂ and l′n(θ|X̃) is [14]

cov[θ̂, l′n(θ|X̃)] = E
[(

θ̂ −E
[
θ̂
]) (

l′n(θ|X̃)−E
[
l′n(θ|X̃)

])]
= E

[(
θ̂ −E

[
θ̂
])

l′n(θ|X̃)
]

= E
[(

g(X̃)−m(θ)
)

l′n(θ|X̃)
]

= E
[
g(X̃)l′n(θ|X̃)

]
−m(θ)E

[
l′n(θ|X̃)

]
= E

[
g(X̃)l′n(θ|X̃)

]
=
∫
· · ·

∫
g(x̃)l′n(θ|x̃)Ln(θ|x̃)dx1 . . . dxn

=
∫
· · ·

∫
g(x̃)L′n(θ|x̃)dx1 . . . dxn

=
∂

∂θ

∫
· · ·

∫
g(x̃)Ln(θ|x̃)dx1 . . . dxn

=
∂

∂θ

(
E[θ̂]

)
= m′(θ)

(2.16)

By the Cauchy-Schwarz inequality and the definition of In(θ):[12, 13, 14]

(
cov[θ̂, l′n(θ|X̃)]

)2 ≤ var[θ̂]var
[
l′n(θ|X̃)

]
= var[θ̂]In(θ) (2.17)

that is (
m′(θ)

)2 ≤ var[θ̂]In(θ) = nI(θ)var[θ̂] (2.18)
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Finally we get the lower bound of variance of an arbitrary estimator θ̂ as [14]

var[θ̂] ≥ (m′(θ))2

nI(θ) (2.19)

This inequality is called the information inequality, also known as the Cramér-
Rao inequality (Cramér and Rao both developed it independently). The infor-
mation inequality shows that as I(θ) increases, the variance of the estimator
decreases; therefore, the quality of the estimator increases. That’s why I(θ) is
called information![14]

If θ̂ is an unbiased estimator, then m(θ) = E[θ̂] = θ, therefore m′(θ) = 1. So for an
unbiased estimator:

var[θ̂] ≥ 1
nI(θ) (2.20)

This is the Cramér-Rao lower bound (CRLB): under certain conditions, no other
unbiased estimator of the parameter θ based on a sample of size n can have a
variance smaller than the CRLB.[12, 13, 14]

2.1.4 Maximum likelihood estimation

There might not be a MVU estimator. It is still possible to find an asymptotic
approximation for which the error decreases as the number of data sets increases.
The maximum likelihood estimator (MLE) is defined as the value of θ as a function
of the data x which maximises the likelihood function L(θ|x).[12, 13, 14]

If we assume that the true value of θ is θ0 and the MLE of θ is θ̂, then the probability
distribution of

√
nI(θ0)(θ̂− θ0) tends towards a standard normal distribution. This

is a key result:
√

nI(θ0)(θ̂ − θ0) ∼ N(0, 1) asymptotically.[14]

This theorem indicates the asymptotic optimality of the MLE since the asymptotic
variance of MLE can achieve the CRLB. For this reason, the MLE is frequently used
with large samples. The beauty of MLE is that it will return the MVU estimator if
it exists.

2.2 Quantum Fisher information

In this section, we focus on one of the tenets of quantum information theory,
quantum Fisher information. To introduce quantum Fisher information compre-
hensively requires a thorough background in quantum mechanics. In the interest
of maintaining enthusiasm for the subject, this section will be kept light on rigour
and short on space. The reader is encouraged to immerse themselves in Quantum
Detection and Estimation Theory by Carl Helstrom[11] if they find their appetite for
quantum information theory suitably piqued. We adopt Helstrom’s approach to
introducing quantum Fisher information, and subsequently the quantum Cramér-
Rao lower bound (qCRLB).
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In the classical case, a PDF p(x) can be utilised to obtain moments and the expecta-
tion value of any observable f .

〈 f 〉 =
∫

f (x)p(x)dx (2.21)

In quantum mechanics, a PDF doesn’t quite cut it. Instead, we use the density
operator, ρ. Physical systems may be described as statistical mixtures of many
wavefunctions, each essentially acting like a PDF. A density operator encapsulates
such ensembles of states which have classical uncertainty as well as the probabilistic
weirdness of quantum mechanics. Properties of ρ, and details of its calculation and
use are given in [15]. Here we aim at the quantum Cramér-Rao lower bound, and
so we need ρ to replace the PDF. Any classical regime is simply a special case of
this generalised quantum approach. The expectation value of an observable F̂ in
quantum mechanics is

〈F̂〉 = Tr
[
F̂ρ
]

. (2.22)

Measurement in quantum mechanics is a can of worms best opened elsewhere. Here
we will stick to an intuitive explanation of what is meant by a positive operator
valued measure (POVM), or a “quantum measurement”. Most generally, a POVM
is a map that associates a positive operator with every subset of measurement
outcomes.[16] Here, we take M to be a POVM that when acting on a quantum
system generates measurement outcomes, which are then the input for an estimator
θ̂ of parameters θ of ρ(θ).4 [11, 17] The probability of the measurement outcome
M(x) being observed given the state ρ(θ) is [18]

p(M(x)|θ) = Tr [ρ(θ)M(x)] . (2.23)

From this PDF we can construct a function that gives the likelihood of the parame-
ters having value θ given outcomeM(x). Let us define some statistics using our
density operator and POVM. Firstly, the expectation value:

E[θ̂j|M(x)] =
∫

X
θ̂j Tr [ρ(θ)M(x)] . (2.24)

When E[θ̂j|M(x)] = θj, the estimator θ̂j is unbiased. We will only contend with
unbiased estimators here. In the quantum case, it is also useful to introduce the
concept of a locally unbiased estimator (LUE). This is when at a certain point θ0,
E[θ̂0|M(x)] = θ0 up to the first order of the Taylor expansion about θ0.[17]

Secondly, the covariance matrix B:

Bij = E
[
(θ̂i − θ̄i)(θ̂j − θ̄j)|M(x)

]
=
∫

X
(θ̂i − θ̄i)(θ̂j − θ̄j)Tr[ρ(θ)M(x)]. (2.25)

To obtain the classical Fisher information, we differentiated the log-likelihood
function. How do we differentiate the logarithm of ρ? The derivative of ρ can be

4M = {M(x); x ∈ X} and θ̂ : X → Θ [17]
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defined in several different ways, and so there are several answers to this question.
Let us adopt operators Lθ,k of ρ(θ) for this purpose, defined by:

∂ρ

∂θk
=

1
2
(Lθ,k ρ(θ) + ρ(θ)Lθ,k) . (2.26)

These Lθ,k are the symmetrised logarithmic derivatives (SLDs). The quantum
Fisher information matrix J has elements

Jij =
1
2

Tr
[
ρ(θ)

(
Lθ,iLθ,j + Lθ,jLθ,i

)]
= Tr

(
∂ρ

∂θi
Lj

)
. (2.27)

In the case where we are after an unbiased estimate of one parameter, the covariance
matrix becomes a variance matrix, and (2.27) becomes

J = Tr(ρ(θ)L2) = Tr
(

∂ρ

∂θ
L
)

. (2.28)

Analogous to the classical case, the quantum Cramér-Rao Lower Bound is

B ≥ (J )−1. (2.29)

In the case of single parameter estimation, the qCRLB as defined by the SLD
can always be achieved.[19] Now for multiple parameter estimation, it should
be pointed out that not often is there a LUE which satisfies the equality of the
qCRLB. This is because the SLDs may not commute. Indeed the ‘best’ LUE
intrinsically depends on the value of unknown parameter.[17] Earlier we presented
the asymptotic optimality of the MLE for the classical CRLB, and it turns out that
MLE can be used in the quantum context to deliver the best LUE. This is through
an adaptive quantum estimation scheme: a small sample

√
n is approximately

measured to find a rough estimate of θ, then local estimation is done using n−
√

n
samples with an optimised measurement based on the rough estimate of θ.[17] The
estimator used is the MLE, and the iteration in [17] is described by

Ln(θ|M(x)) =
n

∏
i=1

p(M(xi)|θ,M(xn, θ̂i−1)) (2.30)

where Ln(θ|M(x)) is the likelihood function to be maximised.

The amazing thing about the qCRLB is that it does not depend directly on the
measurement, unlike the classical CRLB. It tells us the best we can do given the
state ρ(θ). If we find a POVM saturating B, we know we cannot do better than
that.

2.3 Statistical optics

A statistical approach to optics, rather than a deterministic one, is required when
the physical situation encountered has one or more aspects of randomness to it.
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Randomness is an emergent property of quantum mechanics, which describes
light and matter at the smallest scales. It follows that to most accurately describe
optics we need statistical analysis. Culprits of randomness in the case of light
could include a thermal source (e.g. an incandescent lamp) or irregularities in
the medium in which the light propagates (e.g. random changes in refractive
index along an optical path). There are no well-defined physical transformations
providing an analytic solution for light entering a photodetector where there is
shot noise, and none to account for the fluctuations in phase and amplitude of a
real laser beam. Here a brief summary of some of the most important concepts in
statistical optics is given. For further details, the reader is encouraged to peruse
[20] or a similar tome.

2.3.1 Coherence

In statistical optics, we require that the amplitude of the light field U(t) is a random
variable. Simply put, we cannot predict the amplitude of the light field at a given
position and time in advance, but U(t) encompasses both the amplitude values
and their probabilities and so is a complete statistical model.

The time autocorrelation function Γ(τ) associated with U(t) measures the amount
of random fluctuations relative to the propagation of the field.

Γ(τ) = 〈U∗(t)U(t + τ)〉 = lim
T→∞

1
T

∫ T/2

−T/2
U∗(t)U(t + τ)dt (2.31)

The autocorrelation function is also the Fourier transform of the power spectral
density, G(ν):

Γ(τ) =
∫ ∞

−∞
G(ν) exp (−i2πντ)dν (2.32)

The function γ(τ) = Γ(τ)/Γ(0) is normalised, and is referred to as the temporal
coherence function. Temporal coherence is the property of a beam to interfere
with an identical beam that has been delayed in time, and as such, |γ(τ)| measures
the correlation between U(t) and U(t + τ). The coherence time is defined as the
power-equivalent width, which is basically the width of |γ(τ)| :

τc =
∫ ∞

−∞
|γ(τ)|2dτ (2.33)

and could be scaled by the light intensity if not normalised. The coherence length
is defined as lc = cτc. Both quantities are measures which determine whether
different parts of the field are strongly correlated or not.

For quasimonochromatic light - light with a coherence length greater than the
maximum optical path difference - the greater the spectral linewidth the greater
degree of decoherence. For a given spectral density S(ν), one definition of the
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spectral linewidth is

∆νc =

(∫ ∞

0
S(ν)dν

)2 (∫ ∞

0
S(ν)2dν

)−2

(2.34)

which was chosen to relate to the coherence time by simply ∆νc = 1/τc.

For example, the linewidth of the laser used in the course of the experimental work
is approximately ∆νc = 1× 106 Hz. This gives a coherence length of 300 m.

The other type of coherence is spatial coherence, the property of a beam to interfere
with an identical beam that has been shifted in space without being delayed. Spatial
coherence is a measure of the distortions in wavefronts. This spatial dependence
could be incorporated by considering the mutual coherence function, which allows
us to deal with shifts of the beam’s twin in space and time relative to the beam:

g(r1, r2, τ) =
〈U∗(r1, t)U(r2, t + τ)〉√

I(r1)I(r2)
(2.35)

The autocorrelation for spatial coherence would be recovered when the delay τ is
set to zero.

The coherence area can be defined in a manner similar to the coherence time, and
gives an indication of the degree of coherence over the wavefront. For an incoherent
source of radius a, the coherence area is

Ac =
λ2z2

πa2 (2.36)

where z is the distance from the source.[20] Pinholes on the order of micrometers
are required for effective spatial filtering.

The interference of two partially coherent light sources could be characterised by
considering the correlation between the two fields U1 and U2, as given by the
mutual coherence function g12 = g(r1, r2, 0). The mean intensity would be given by

〈I〉 = 〈|U1 + U2|2〉 = I1 + I2 + 2
√

I1 I2Re(g12) (2.37)

For perfectly correlated light, g12 = exp (iφ) which gives the relative phase shift.
The interference varies between constructive and destructive, depending on the
phase angle φ. For fields with no correlation, g12 vanishes so that there is no
interference, and the intensities add directly.

2.3.2 Transverse modes

The distribution of the electric field may be described by a transverse mode. Here
light travels in the positive z direction. The profile of the electric field in the xy
plane will satisfy the wave equation, and also any boundary conditions of the
system. The wave equation is

∇2U − 1
c2

∂2U
∂t2 = 0 (2.38)
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where U0 is the complex amplitude of the wave. The wave equation admits well-
known plane wave solutions, and in the case of a beam with a varying amplitude
perpendicular to the z direction, solutions of the form

U(x, y, z) = ψ(x, y, z) exp (−ikz)T(t) (2.39)

can be found. In the case of a narrow beam of light, the paraxial approximation
can be made and the wave equation reduces to [21]

∂2ψ

∂x2 +
∂2ψ

∂y2 − 2ik
∂ψ

∂z
= 0 (2.40)

Solutions of this equation are of the form

ψ(x, y, z) = E0
w0

w
Hm

(
x
√

2
w

)
Hn

(
y
√

2
w

)
·

exp
(
−(x2 + y2)

(
1

w2 +
ik
2R

)
− i(m + n + 1) arctan

(
z
z0

))
where R = z(1 +

π2w4
0

λ2z2 ) is the radius of curvature of the phase front,

w = w0

√
1 +

λ2z2

π2w4
0

is the waist of the beam, with minimum waist w0,

k =
2π

λ
,

(2.41)

and Hm, Hn are the Hermite polynomials of order m and n respectively.[21, 22]
These equations describe the Hermite-Gaussian modes with mode numbers mn,
also known as transverse electromagnetic modes (TEMmn). The output of many
lasers is TEM00. There are other beam profiles such as Laguerre-Gaussian modes
and Bessel modes.[22]

2.4 Photodetection

Detecting the presence of light is a subtle experimental task. Photodetectors absorb
optical energy and output a corresponding electrical signal. The quantum nature
of light cannot be ignored and so the theory of photodetection can be dealt with
either semiclassically or by full quantisation. The former can be thought of in
terms of the wave-particle duality, and suffices for most practical purposes (e.g.
the photoelectric effect, coherent states). The latter stipulates that the electric field
be quantised and is only necessary in the case of non-classical states of light (e.g.
squeezed states, Fock states). A thorough introduction to Poisson processes is given
here. This is necessitated by their use in semiclassical photodetection theory. Lastly,
we compare the semiclassical and quantum descriptions of photodetection.
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Figure 2.1: Some intensity profiles of Hermite-Gaussian modes.[22]

2.4.1 Poisson processes

A Poisson process is an example of a stochastic process used for arrival events,
or simply, arrivals. The probability of an arrival during a time period ∆t1 is
independent of the probability of an arrival during a different time period ∆t2. As
an arrival process, the Poisson process starts at time zero. The intervals between
arrivals form an exponential distribution function. Denoting β as the rate such that
the number of arrival events in an interval of length t is βt, each random variable
X has a density β exp (−βx).

Poisson processes are what is called memoryless. This means that if an arrival
event has not occurred yet at a time u then the distribution of waiting time for an
arrival event on either side of u is the same. So the remaining waiting time does
not know that there has been waiting in the past.[23]

An inhomogeneous Poisson process is one where the arrival rate is a function of
time. β(t) is positive. The distribution of the number of arrivals in a time interval
(t, τ) is given by

Pr [N(t, τ) = n] =

(∫ τ
t β(u)du

)n
exp

(
−
∫ τ

t β(u)du
)

n!
(2.42)

If the arrival events in a Poisson process are independently directed to different
places, and there is a fixed probability associated with being directed to a partic-
ular place, then the arrivals at each place form individual, independent Poisson
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processes.[23] This property allows us to consider the noise due to the pixellation
of photodetectors as a Poisson process, as the photodetector can be considered as
many arrival places.

2.4.2 Semiclassical and quantum theories of detection

For semiclassical applications, monochromatic light incident on a detector can
be described by the field field E(t) exp (−iωt). The average power of the light
illuminating the detector will then be h̄ω|E(t)|2. The photon count N(t) is given
by an inhomogeneous Poisson process with rate β(t), dictated by: statistically
independent increments, and Poisson distributed increments according to (2.42).[24]
The rate function is given by β(t) = η|E(t)|2. The mean photocount and the mean
photocurrent are thus

〈N(t)〉 =
∫ t

0
η|E(τ)|2dτ (2.43)

〈j(t)〉 = qη|E(t)|2 (2.44)

The covariances of the uncertainties of both these quantities give shot noise and
excess noise terms.

In fully quantised photodetection, the light field is also quantised Ê(t) exp (−iωt).
The photocurrent is ĵ(t) = qÊ†Ê and the photocount is N̂(t) = 1

q

∫ t
0 ĵ(τ)dτ.

This project uses classical sources of light. Is quantum mechanics overdoing it
slightly? Quantum mechanics is the most powerful theory of light available: we
discover what is possible in optics and detection through quantum mechanics. Any
unbiased estimation using measurement, classical or quantum, will be bounded and
optimised by the qCRLB. Through quantum optics, semiclassical approximations
can be shown to be rigorous on a case-by-case basis, while respecting fundamental
quantum principles governing noise.

2.5 Resolution

What does it mean to resolve something? Are we getting closer to resolving this
issue? I don’t know. Read this section and find out!

2.5.1 Point spread functions

Before we discuss resolution, it is important to set out what is meant by a point
spread function (PSF). As the name suggests, this is a function that describes the
spreading out of a point source or object as it is seen through an imaging system.
Any object can be expressed as the superposition of many point-like objects, which
is why the PSF is so useful.
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An example of a point source is light shone through a very small circular aperture.
Fraunhofer (far-field) diffraction around the aperture will produce an intensity
pattern

I(Θ) ∝
(

J1(πDΘ/λ)

(πDΘ/λ

)2

(2.45)

where J1(r) is a Bessel function of the first kind, D the diameter of the aperture,
and Θ is the angle subtended from the centroid. The pattern, with its central bright
disk and concentric light and dark rings, is known as an Airy pattern.[25]

The Fraunhofer diffraction pattern is given by the two-dimensional Fourier trans-
form of the aperture. A rectangular aperture of infinite length and width W,
produces an intensity pattern

I(Θ) ∝
(

sin (πWΘ/λ)

πWΘ/λ

)2

(2.46)

In practise, the finite length of the slit or the spot size of the beam incident upon
it limits the vertical extent of the diffraction pattern (when the slit is oriented
vertically). The PSFs (2.45) and (2.46) may be nicely approximated by Gaussian
curves. Examples of this approximation are shown in Figure 2.2.

a) b)

Figure 2.2: Gaussian approximations of point spread functions: a) in red y = 4
(

J1(πx)
πx

)2
, in blue

y = exp (−2.83x2); b) in red y =
(

sin (πx)
πx

)2
, in blue y = exp (−3.65x2).

2.5.2 Quantifying resolution

There exist several different measures of resolution. Here 2r is the smallest distance
you can place two sources apart while still being able to distinguish that they are
separate sources through conventional optical means.

Ernst Abbe was a pioneering microscope manufacturer and is generally credited as
the first to attempt to quantify resolution. Abbe’s diffraction limit is [26]

rAbbe =
0.50λ

NA
(2.47)
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where λ is the wavelength used and NA is the numerical aperture. The numerical
aperture is n sin θ for a optical system involving a lens: n is the refractive index
of the medium between the objective lens and the image plane, and θ is the half
the opening angle of the largest cone of light on either side of the lens. Rayleigh’s
criterion is another resolution measure, attributed to Lord Rayleigh. Two sources
are said to be resolved by this criterion if the first minimum of the diffraction
pattern of one source lies at the maximum of the other. If the sources are any closer
together than this, they are unable to be resolved.[27] The expression below is
derived from the Fourier transform of a circular aperture, which is a Bessel function
of the first kind.

rRayleigh =
0.61λ

NA
(2.48)

For angular resolution of an iris of diameter D, the Rayleigh criterion becomes

ΘRayleigh = 1.22
λ

D
(2.49)

Sparrow’s limit is attained when there is a constant brightness between the two
sources of light in an image featuring both sources. Sparrow, an astrophysicist,
reasoned that if you can detect a dip in intensity between two sources, then you
can resolve them.[26] Sparrow’s limit is when it is no longer possible to resolve
sources and is mathematically presented as

rSparrow =
0.47λ

NA
(2.50)

Other diffraction measures exist, but the Rayleigh’s criterion and Abbe’s limit are
by far the most common. Figure 2.3 shows the differences between (2.47), (2.48)
and (2.50) in practise.

a) b) c)

Figure 2.3: Different measures of resolution for two point sources (red and blue), with the combined
intensity profile is shown in purple: a) sources separated by 2rRayleigh, b) sources
separated by 2rAbbe, and c) sources separated by 2rSparrow.

Although the diffraction limit was believed to be a boundary for experimental work
for decades, it has never been - or claimed to be - a fundamental physical law. There
has been increasing dissatisfaction with these kinds of resolution measures, as they
do not account for the intensity of the light or the duration of the measurement.
Indeed Rayleigh and Abbe’s work was motivated in part by the human eye, which
is not a state-of-the-art optical instrument. For visible wavelengths (≈ 500nm) and
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a NA of 1, Abbe, Rayleigh, and Sparrow suggest that we can resolve point sources
down to 250 nm, 305 nm and 235 nm respectively.

Photon counting statistics now play a part in many diverse measurements of light.
Beginning from a stochastic viewpoint, it is possible to define other resolution
measures such as the fundamental resolution measure or FREM.[28] This is a
measure, rather than a limit, as it provides a metric for the estimation of separation
between sources instead of dictating a separation at which resolution becomes
impossible.

FREM =
1√

4πΛ0(t− t0)Γ0(d)
λ

NA
(2.51)

This retains the some form of earlier resolution limits as far as dependence on
wavelength and numerical aperture are concerned; however, it also includes factors
due to the intensity of each point source (Λ0), the acquisition time interval ([t, t0]),
and the point spread function (Γ0(d)) for sources separated by distance d. The point
spread function described in [28] is involves a complicated integral across the image
plane, where the integrand consists of first- and second- order Bessel functions of
the first kind (familiar from Airy disk diffraction patterns). The argument of the
Bessel functions is the product of the radial distance from a point source and the
ratio λ/NA.

Plots of the integrand of Γ0(d) are shown in Figure 2.4. The integrand is basically
zero everywhere except for a region about the origin, and becomes much flatter
for greater λ/NA. If λ is less than d, then the integrand dramatically changes
shape: it approaches zero at the origin, with peaks becoming taller, sharper, and
tending towards two distinct locations. The separation of the pairs of peaks hints
at increased resolving power at shorter wavelengths. Indeed the FREM exhibits
a non-linear dependence on λ/NA. The FREM indicates that with an increasing
number of detected photons, sources at separations approaching 50 nm can be
resolved. As the separation tends to zero, the FREM blows up due to Γ0(d) tending
to zero.

As emphatically stated in [20], statistical methods can – and should – be applied
at every stage of the analysis of an optics experiment. The FREM is a gauge
of how accurate the resolution is. In [28], the FREM treats the photodetector as
though it has pixels of finite size and so accounts for shot noise. The authors then
include additional sources of Poissonian (dark current, autofluorescence of the GFP)
and Gaussian (detector readout) noise in their treatment to create the “practical”
resolution measure using Fisher information and parameter estimation. With this
more realistic analysis and experimental verification using GFP and cyanine-5
molecules, it was concluded that increasing photocount does allow for precise
estimation of the parameter d beyond Rayleigh’s criterion. For example, the FREM
for d = 235nm, a detection rate of 3000 photons per second, a detection time of
1 second and a NA of 1.4, is ≈2nm for visible light. Unlike the limits discussed
earlier, the FREM encapsulates extra information including the intensity of the
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a) b)

c) d)

e) f)

Figure 2.4: The integrand of the Γ0(d) function for d= 235nm, NA = 1.4 and different λ: a)
100nm, b) 200nm, c) 250nm, d) 300nm, e) 400nm, and f) 500nm.
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sources and the duration of the measurement. This allows different experimental
conditions to be compared for objects consisting of point sources separated by the
same distance. This work has two main caveats: higher photocounts are not always
possible in fluorescence microscopy due to bleaching of the fluorophores, and both
the FREM and the practical resolution measure asymptote to infinity at d = 0.
Nevertheless, [28] removes the blinkers of a hard diffraction limit from the eyes of
physicists and shows the agility of the estimation theory approach to resolution.

The problem with using more photons alone to resolve as d tends to zero shown
in [28] is titled Rayleigh’s curse by Tsang et al.[6]. This is responsible for the
diverging behaviour of the FREM. Rayleigh’s curse is as follows:

Any (unbiased) estimate of the separation between the sources from the
image-plane photocounts must suffer a divergent mean squared error
for a given mean photon number as the separation tends to zero.[6]

2.5.3 Resolution for incoherent point sources

Pioneering work on the resolution of incoherent point sources of light via estimation
theory was done by Carl Helstrom in the 1970s.[11, 29] He considered two problems,
each with profound implications for signal processing and imaging. Each problem
concerns a choice between two hypotheses. The first: there are two point sources of
incoherent light separated by a known distance σ and digits 0 and 1 are signalled
by the illumination of one or other of the sources. Both sources are never on
simultaneously.[11] From a distance away that is much larger than the separation
between the sources x, have we received a 0 (hypothesis H0) or a 1 (hypothesis H1)?
What is the average probability of an incorrect decision? This error probability
indicates the resolvability of the sources.

Helstrom treats the binary hypothesis test as a state selection problem. Each
hypothesis is assigned a density matrix ρ0, ρ1, which represents the electric field at
the receiving aperture under H0 or H1 respectively. The operator equation

(ρ1 −Λρ0)|ηk〉 = ηk|ηk〉 (2.52)

gives the eigenvectors |ηk〉, which are used to construct the optimum detection
operator Π. The constant Λ is equal to one in the case where the prior probabilities
of the two hypotheses are equal (that is, one source is no more likely than the other
to be turned on without knowing anything else). The resulting optimum detection
measurement has two outcomes 0 or 1, corresponding to decisions accepting either
H0 or H1. In the case of no photons entering the aperture, H0 and H1 are equally
likely according to this operator. The error probability is calculated and is shown
in Figure 2.5.

The second estimation theory problem considered by Helstrom can be unpacked
in much the same way, but with different density operators (and more algebra
again!). Are there two incoherent sources of equal intensity located at (x, 0, 0) and
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a) b)

Figure 2.5: Average error probability Pe in terms of the separation parameter σ for different values
of mean received photon number (indices of curves). The separation parameter is
expressed in terms of the wavelength of light λ, the extent/diameter of each source in
the object plane a,the separation of the two sources (if there are two sources!) ε, and the
distance between the object and image planes R. a) is a plot of Pe in deciding which
of two sources is radiating, b) is a plot of Pe in deciding whether there is one source
present or two.[11, 29]

(−x, 0, 0) or is there one source of twice the intensity at (0,0,0)?[29] The average
probability that an incorrect hypothesis will be chosen is plotted in Figure 2.5, and
is remarkably similar in form to that of the first problem.

For decades, Helstrom’s work has been peerless in the area of quantum resolution.
However, the point sources he considers have a known separation. In a sense, this
begs the question: what’s the point of resolving sources when you already know
how far apart they are? We must now move forwards using key results from this
chapter into the new world of super-resolution.



Chapter 3

Super-resolution

We have arrived at the hot topic of this thesis: super-resolution. In the first
section of this chapter, we look at new techniques utilising Fisher information
for imaging point sources separated by distances less than Rayleigh’s criterion.
We then move on to interferometry and its specific applications in the field of
super-resolution through image inversion interferometry. Finally, superlocalisation
via image inversion interferometry is introduced.

3.1 Recent progress

The literature of this section draws upon quantum metrology, statistical optics
and estimation theory. Here several methods of achieving super-resolution are
reviewed. All have been uploaded to the arXiV in the past year and there is not a
GFP in sight. These techniques actively violate the diffraction limit by exploiting
information in the transverse modes of the image plane. While none of the works
presented in this section rely on interferometry, they serve to highlight the power
of quantum estimation theory in the realm of super-resolution.

Splitting the image plane into its constituent Hermite-Gaussian modes (2.3.2) and
measuring the amplitude of each is a process proposed by Tsang, Nair and Lu
in [19] to superresolve incoherent point sources. This method is titled spatial
mode demultiplexing (SPADE). For point sources with zero separation, there is
effectively one point source that is completely spatially symmetric, and hence all
of the light detected in a paraxial scheme is coupled into the Gaussian TEM00

mode. As the separation between sources increases, the amount of detected light
in TEM00 decreases. In short, transverse modes are sensitive to any separation but
do not indicate which source is on or off within a given (very short) coherence
time.The Hermite-Gaussian basis is ideal for estimating the separation between
point sources. Indeed the Fisher information calculated in this basis (J (HG)) does

25
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not depend on the separation parameter:

J (HG) =
N

4σ2 (3.1)

where N is the average photon number and σ the width of the PSF from each
source. If the total number of photons counted over all measurements is L, with mq

being the number of photons in each mode TEMq0, then the MLE estimator for the
separation is

d̂ = 4σ

√
1
L ∑

q
qmq (3.2)

With an increasing number of measurements, maximum likelihood estimation ap-
proaches the QCRLB. Monte-Carlo simulation in [19] confirms this. Experimentally,
it is proposed that highly multimode waveguides would be a natural choice for
measuring the photocounts in the Hermite-Gaussian basis, for these transverse
modes are the waveguide modes of a quadratic-index waveguide. Simpler set-ups
have been suggested (binary SPADE, [19] and superresolved position localisation
by inversion of coherence along an edge (SPLICE) [30]). Common to both exper-
iments is measuring the amount of light in the TEM00 mode, and the amount of
light not in this mode, either as is ([19]) or projected into a single mode orthogonal
to TEM00 ([30]). The beauty of this simplification is as the separation decreases, far
less light is found in the modes ‘further’ from TEM00, so little information is lost
for small separations. At larger separations, the sources can of course be resolved
through image plane photocounting.

Figure 3.1: Fisher information: binary SPADE, SPLICE and image plane photocounting (IPC).
The Fisher information is given in units of N/4σ2 and the separation of the sources in
units of σ. [30]
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For binary SPADE, the Fisher information is given by

I (Bi) =
N

4σ2
Q exp (−Q)

1− exp (−Q)
, Q =

d2

16σ2 (3.3)

and the MLE is simplified to

d̂(Bi) = 4σ

√
− ln

m0

L
. (3.4)

Recent alternative uses of higher order transverse modes to achieve super-resolution
include optical heterodyne detection[31] and digital holography.[32] The former
treats the light from the two incoherent point as the signal beam. By preparing
the local oscillator beam in TEM01, the output power of the detector samples only
the TEM01 mode of the signal beam. In this way, information about the separation
between these sources can be gleaned. This technique has delivered more precise
resolution for sources separated by 0.18mm,[31] but mode-matching difficulties in
practise and the limitations caused by shot noise have meant smaller separations
have not been imaged. The latter method projects onto different modes by way
of an amplitude spatial light modulator that creates a hologram, and measures
the photocounts in the TEM00 and TEM01 modes.[32] The initial demonstration
resolved sources with separations down to ≈ 8µm.

The above works draw similar conclusions through a variety of means. Trans-
verse modes beyond TEM00 are dense in information about the separation of point
sources. With an increase in the number of modes measured comes an increased
range of separations for which the measurement saturates the qCRLB.[33] As these
techniques are not yet a year old, we can expect sub-Rayleigh separations to be re-
solved with improvements in the near future. Already the errors accompanying the
estimates of separations in [30, 31, 32] significantly better the precisions established
by Rayleigh’s criterion through conventional image plane methods. It should be
noted that none of the demonstrations in this section used thermal sources, only
pseudothermal sources that were mutually incoherent. While it is claimed that the
performance of each of the methods [30, 31, 32] would not suffer if the illumination
came from classically incoherent light, no one has actually bothered to do this yet.
Using incoherent light is an important test of super-resolution methods prior to
their implementation in optical fields such as fluorescence microscopy.

3.2 Interferometry

Interferometry is the science of combining waves – usually electromagnetic, so
henceforth light will be used as the example – together to generate some new
data that will tell you something about where or what the waves came from.
Interferometers come in many designs depending on their purpose. For example,
there is the legendary Michelson-Morley experiment using a two-arm interferometer
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with a single beam splitter at the intersection of the two arms and a single detection
port. This experiment demonstrated that light waves do not require a medium in
which to propagate, and disproved the purported existence of the luminiferous
aether.

A more subtle interferometric experimental set-up is the Mach-Zehnder interfer-
ometer, which features again two arms but this time two beam splitters and two
detection ports. Light comes in and is split along two paths. Each path is normally
depicted as being two sides of a square. The light is then recombined at the final
beam splitter. Half the light from each path goes to each detector. The square
has been completed in a sense. One of the detection ports is a so-called ‘dark’
port, where destructive interference is seen. The other is the ‘bright’ port, where
constructive interference is observed. By changing the optical path length difference
between the two arms, you can scroll through interference fringes. Which fringes
you get at either port is determined by the relationship between the optical path and
the wavelength. A whole number of wavelengths as a path length difference gives
constructive interference - the beams from each arm have arrived at the detector
in phase. In this way, interferometers can detect very small changes in distance or
optical path length. This is well known and these kinds of interferometers feature
in the basic experimental study of physics.

a) b)

Figure 3.2: Schematic diagrams of a) a Michelson interferometer with one mirror translating (blue
arrow) and b) a Mach-Zehnder interferometer

The visibility of an interferometer is defined as

V =
Imax − Imin

Imax + Imin
(3.5)

where Imax and Imin are the maximum and minimum intensities of the fringe. As
the relative pathlength difference grows between the arms of the interferometer, the
visibility will drop off, owing to the finite coherence length of the light. This harks
back to the principles outlined in 2.3.1: when the time delay in one arm approaches
or exceeds the coherence time, visibility will go to zero. When the path length
difference is zero, there is still an overarching envelope seen in the fringe pattern,
that is, the central fringe is the brightest. This indicates spatial coherence.[20]

It is useful to define the ratio of residual power output at a port of an interferometer,
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Ω:
Ω =

Total power output at port
Power in first arm plus the power in the second arm

. (3.6)

3.2.1 Image-inversion interferometry

An image-inversion interferometer is basically a Mach-Zehnder interferometer
with an arrangement of mirrors, or another inversion device, in one arm to flip
the beam about one axis. Any light that is on axis remains so, and there is still
destructive and constructive output ports for this light. Any antisymmetric, or
off-axis, components of the field entering the interferometer will be preserved at
the dark port.

Figure 3.3: A schematic diagram of an image inversion interferometer. Horses are for illustration
only.

3.3 Superlocalisation via image inversion interferometry
(SLIVER)

Superlocalisation via image inversion interferometry, or SLIVER, is a super-
resolution technique put forwards by Ranjith Nair and Mankei Tsang in late
2015.[6] In essence, information about the separation of two point sources centred
about the optical axis is contained in the output of the dark port of an image
inversion interferometer. As stated above, this is because the dark port is sensitive
to off-axis components of the electric field; thus, it enables an estimator for the
separation to be formulated, as this explicitly depends on how off-axis the points of
light are. Below the SLIVER method is studied from the perspective of estimation
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theory, closely following the work of Nair and Tsang in [6]. As such, all equations
and results in this section can be assumed to be sourced from [6] unless otherwise
referenced. There are five aims of this section (relevant subsections in parentheses):

1. to detail how SLIVER achieves super-resolution through the calculation of
key statistical quantities (3.3.2,3.3.3);

2. to familiarise the reader with the experiment ahead of the specific experimen-
tal discussion in Chapter 5;

3. to present a possible extension of the method, pixelated SLIVER (3.3.5);

4. to highlight the applicability of SLIVER in several scenarios, including the
binary hypothesis problems of 2.5.3 (3.3.6);

5. to inform the reader of empirical progress made with SLIVER independently
of this project during the course of the year (3.3.7).

3.3.1 Statistical optical modelling

The interferometer requires incoherent thermal sources.1The incoherence is neces-
sary for each source to interfere only with itself in the interferometer. Examples are
discharge lamps and light emitting diodes, and the optical states of such sources
could be modelled as thermal states. The incoherence is introduced by using
random variables for the amplitudes. The input field entering the interferometer is
given as

E(ρ) = A1ψ(ρ + d/2) + A2ψ(ρ− d/2) (3.7)

where d denotes source separation, A1 and A2 the strengths of the fields for each
source, and the distribution ψ of the light is a Gaussian

ψ(ρ) =
1√

2πσ2
exp

(
−|ρ|2/(4σ2)

)
. (3.8)

The input field can be decomposed mathematically into the symmetric and anti-
symmetric parts E = Ea + Es:

Ek(ρ) =
E(ρ)± E(−ρ)

2
=

Ak

2
(ψ(ρ + d/2)± ψ(ρ− d/2)) (3.9)

where the subscript k = s, a corresponds to quantities at the symmetric and
antisymmetric ports respectively. Similarly, the addition and subtraction in the ±
sign correspond to k = s, a respectively. Symmetry gives Ak = A1 ± A2.

The inversion arm of the interferometer would act on the input field as Eout(ρ) =

Ein(−ρ), thus the recombination at the output beam-splitter would be such that
the symmetric and antisymmetric parts exit in different ports. In short, the image
inversion interferometer functions to separate the symmetric and antisymmetric
parts of the input field. Due to the symmetry of ψ, it suffices to invert in just

1For coherent sources, there are easier methods to estimate the separation precisely.
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one coordinate Eout(x, y) = Ein(−x, y) through some mirror plane. This allows for
easier realisations of the inversion in practice.

The integrated photocount at each port would be given by the modulus squared
of the amplitude integrated over the image plane. As usual, there will be an
interference term. Direct computation gives the average photocount at each port

N̄k = ε(1± δ(d)), (3.10)

a function of the average photocount without interference ε = E[|A2
s |]/2 =

E[|A2
a|]/2 and the interference term

δ(d) = Re

∫
ψ(ρ)ψ(ρ− d)dρ. (3.11)

For an incoherent thermal source, the photon statistics could be modelled by the
Bose-Einstein distribution

Pk(n) = Pr [Nk = n] =
1

Nk

(
N̄k

N̄k + 1

)n

, (3.12)

which would also serve as the likelihood function. In particular, the source sep-
aration would affect the degree of interference, which would in turn affect the
photocount. The likelihood function quantitatively expresses this dependence.

3.3.2 Cramér-Rao bounds and Fisher information

Armed with the likelihood function, one can now proceed to calculate key quantities
of estimation theory. The classical Fisher information I is

Ik = E

[
∂

∂d
(log pk)

]2

. (3.13)

The expectation would be performed over the likelihood function as dictated by
the theory, which in this case is the Bose-Einstein distribution. Computing the
expression explicitly leads to

Ik =
εγ(d)2

1± δ(d)
1

1 + ε(1± δ(d))
. (3.14)

A reminder that addition and subtraction in the ± sign corresponds to the sym-
metric and antisymmetric ports respectively. The function γ(d) is the derivative of
δ, and as δ is an even function of the separation d, γ is an odd function and thus
vanishes for zero separation.

Inversion of the Fisher information gives the Cramér-Rao bound

var[d̂] = E
[
d̂(Nk)− d

]2
≥ I−1

k =
1± δ(d)
εγ(d)2 +

(
1± δ(d)

γ(d)

)2

. (3.15)
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In the limit of zero separation, δ(d)→ 1 and γ(d)→ 0. Hence I−1
s → ∞ pushing

the MSE to infinity as well. This was expected: the symmetric port suffers from
Rayleigh’s curse.

The indeterminate form for I−1
a turns out to be finite in the limit and is equal to

1/2Mε(∆k)2, where ∆k is the spectral width of the Gaussian ψ given by

∆k =

√∫ ∣∣∣∣∂ψ(x, y)
∂x

∣∣∣∣2 dxdy. (3.16)

Figure 3.4: Fisher information as a function of source separation for average ε = 10−3. The blue,
green, and red curves represent the information obtained through photoncounting at the
symmetric port, photoncounting at the antisymmetric port (number-resolved detection),
and photoncounting at the antisymmetric port (on-off detection).[6]

3.3.3 Maximum likelihood estimation

If P = ∑M
j=1 pj denotes the photocount over M measurements, direct computation

shows that the maximum likelihood estimator is given by

d̂ = 2σ

√
−2 log

(
1− P

Mε

)
(3.17)

under the assumption P < Mε. Note that this assumption is physical since P
is the measured photocount with interference, while Mε is that without. At the
antisymmetric port where the interference is destructive, the measured value would
have to be smaller. With increasing M, the estimator asymptotically converges to
the Cramér-Rao bound, and the MSE remains finite for small separations. The finite
MSE allows for the measurement of the separation in the antisymmetric port. As
the measurement depends on the interference within the interferometer, increased
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separation weakens the interference and hence decreases the Fisher information.
The MSE can be simulated for different separation values using Monte Carlo
methods. For this purpose, the estimator returns a value of 2σ for cases where
P > Mε.

Figure 3.5: Simulated MSE for bucket detection at the antisymmetric port as a function of source
separation for average ε = 5. The blue curve is the normalised CRLB for photoncount-
ing at the antisymmetric port. The remaining curves present the simulation results for
different numbers of measurements (M = 50, 100, 150).[6]

Throughout the analysis in [6], number-resolved semi-classical photodetection has
been employed. This is not a necessary condition for producing a non-divergent
Cramér-Rao bound at the antisymmetric port. On-off detection also admit super-
resolution in a similar way. In terms of Fisher information, on-off agrees with
number-resolved detection for weak sources (ε� 1 photon). For stronger sources,
the Fisher information for on-off detection decays off much faster compared to
number-resolved detection and hence has less resolving power.

3.3.4 The effect of misalignment on SLIVER

Up until this point, all formulations of statistical quantities have been based on
the centroid of the two sources being known, and located on the optical axis at
that. The sensitivity of the SLIVER method to displacements of the centroid has
not yet been examined in detail in any preprints or publications; however, Tsang’s
group has simulated the MSE for a centroid located ξσ off the optical axis in the
plane of the two point sources. The result, which indicates the resilience of SLIVER
to misalignment in the plane of the sources, is shown in Figure 3.8. For small
misalignments (ξ = 0.1) the MSE surpasses the CRLB for aligned on-off detection.
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Figure 3.6: Fisher information as a function of source separation for ε = 0.5. The blue, green,
and red curves represent the information obtained through photoncounting at the
symmetric port, photoncounting at the antisymmetric port (number-resolved detection),
and photoncounting at the antisymmetric port (on-off detection).[6]

Figure 3.7: Simulated MSE for on-off detection at the antisymmetric port as a function of source
separation for average ε = 0.2. The blue curve is the normalised CRLB for photoncount-
ing at the antisymmetric port. The remaining curves present the simulation results for
different numbers of measurements (M = 100, 200, 400).[6]

Increasing misalignment does not hamper the performance of the estimator at
larger separations; while as the separation goes to zero, the MSE increases but
importantly does not diverge. Obtaining the quantum Fisher information in the case
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Figure 3.8: Simulated MSE for on-off detection at the antisymmetric port as a function of nor-
malised source separation for average ε = 0.2. The blue curve is the normalised
CRLB for on-off detection at the antisymmetric port. The remaining curves present the
simulation results for different numbers of measurements (M = 100, 200, 400).[6]

when both the separation and the centroid are unknown forms a two-parameter
estimation theory problem. The form of this matrix has not been deduced. Direct
imaging of the centroid is not subject to a divergent error, so it can be located using
conventional techniques and aligned accordingly.

3.3.5 Pixelated SLIVER

While SLIVER delivers super-resolution for separations close to zero, the Fisher
information via this method decreases with increasing separation. Eventually, the
separation may be large enough to resolve the point sources through established
image plane photocounting, but an approach that yielded high Fisher information
at any separation would be preferred. Tsang and Nair suggest collecting spatial
information from both ports of an image inversion interferometer that is otherwise
lost through photodetection alone by using spatially-resolved detectors consisting
of many pixels.[33] This is called pixelated SLIVER (pix-SLIVER). For two sources
separated by a distance d along the x-axis and then interfered with an inversion in
the same axis for one arm, the P pixels of the array of width W would be vertical
strips of equal x width. Instead of one on-off detection measurement consisting of
a 1 (photon detected) or a 0 (no photon detected), an on-off measurement would
be a vector with a 1 or a 0 component for each pixel on both detectors.

Parameter estimation from such a vector quantity is much more complicated
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to describe, and indeed the Fisher information depends on the covariances of
detections at different pixels on the two different arrays, different pixels on the
same array, and the same pixels on different arrays. For this reason, Tsang and
Nair place a lower bound on the Fisher information available via pix-SLIVER using
on-off detection in [33], rather than providing an explicit calculation for number-
and spatially-resolved detection at both ports. Their results are shown in Figure
3.9.

Figure 3.9: Fisher information versus separation for pix-SLIVER. The quantum Fisher information
for two sources of arbitrary strength is shown in solid blue (expression (3.18)). The
lower bound on the Fisher information for pix-SLIVER with P = 1, 3, 5, 9, 25, and 40
are the dashed lines. The lower bound for P = 40 is also deconstructed into contributions
from the antisymmetric and symmetric ports, shown respectively by the green and
pink dotted lines. Finally the blue dashed-dotted line represents the Fisher information
obtained through direct imaging. In all cases, the arrays are taken to have W = 17σ
and so each pixel is 17σ/P wide. [33]

Intuitively, the superior performance of pix-SLIVER compared to SLIVER across
a range of separations can be explained quickly by considering the spread of the
light from the sources as d increases. How spread out the light is when it arrives
at an array is sensitive to the separation. Hence, a measurement that accounts for
this spread, rather than merely adding up the number of photons, will return more
information at larger separations.

3.3.6 Applications

The super-resolution method SLIVER has the potential to launch new developments
in imaging previously imprisoned by Rayleigh’s criterion. This is discussed in the
final section of this thesis. The SLIVER framework may be applied directly to the
binary hypothesis problems considered first by Helstrom some forty years ago (see
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2.5.3) to great effect.[34]

As an extension of the estimation theory presented above, Nair and Tsang next
considered sources of arbitrary strength, broadening the applicability of their
approach to include incoherent sources in the microwave and infrared, and high-
temperature stars.[33] Strong sources introduce the possibility of multiphoton
coincidences at the detector. For two sources of arbitrary strength separated by d,
the quantum Fisher information is

J = −2
(

∂γ(d)
∂d

∣∣∣∣
d=0

)
Ns − 2γ2(d)

(
(1 + Ns)N2

s
(1 + Ns)2 − δ2(d)N2

s

)
(3.18)

where first term is identified as twice the mean-squared spatial bandwidth of the
PSF in the x-direction.[33]

Adding more dimensions presents another challenge for both theory (more param-
eters to estimate) and experiment (in the case of SLIVER, a second interferometer in
the vertical direction). In the preprint [35], the quantum Fisher information matrix
for the four parameters needed to describe sources separated in two directions
is presented. Since the quantum Fisher information for multiple parameters was
glossed over in 2.2, here we merely alert the reader that a proposal exists for a 2D
SLIVER.[35]

The work of Tsang and co. has provided a leading example of quantum estimation
theory forging ahead in problems of localisation and resolution, which has in turn
motivated refinements in existing super-resolution techniques that have merely
skirted around Rayleigh’s criterion rather than outright defying it. The estimation
of the position of a fluorescing molecule is revisited in [36], no doubt anticipating
the application of SLIVER, SPADE or similar to the field of fluorescence microscopy.

3.3.7 Previous experimental progress with image inversion interferom-
etry

One of the first appearances of image inversion interferometry in the literature as a
technique for resolution enhancement is the 2007 work of Kai Wicker and Rainer
Heintzmann.[37] They proposed imaging through a standard confocal microscope,
or via an extended focus technique, followed by an image inversion interferometer.
Their work does not consider the parameter estimation problem of localising
point sources but rather introduces image inversion as a means to underscore off-
axis components of the object to be imaged, and proceeds by analysing the optical
transfer function for a single point source a distance away from the optical axis. The
difference in intensity between the images at the two ports of the interferometer
is used effectively to narrow the point spread function of the imaged points,
improving the lateral resolution. This is demonstrated in Figure 3.10. Combining
Wicker and Heintzmann’s basic instrumentation proposal with recent works from
the past twelve months, such as [36], which apply quantum estimation theory in the
context of fluorescence microscopy, offers increased potential to expand resolution
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capabilities of microscopes. Extensions of [37] include performing the inversion
across several image rotation interferometers rather than in one image inversion
interferometer. This would reduce the constant offset in the intensity at the dark
port, which contains no information about the off-axis position of the fluorescing
protein.

Figure 3.10: Simulated images via Bessel beam excitation of a synthetic sample (a)). b) simulation
of Bessel beam excitation of sample with no interferometry. c) Image plane of the
symmetric port after simulared image inversion interferometry. d) Image plane of the
antisymmetric port. e) The difference of the two output ports. f) Contrast enhanced
version of e). Image from [37], where further specifics can be found.

In mid-2016, a demonstration of super-resolution through image inversion interfer-
ometry for mutually incoherent sources was completed by a group at the Centre
for Quantum Technologies2 at the National University of Singapore.[38] This was
the first instance of SLIVER being tested experimentally. However, there were three
key differences between the work in [38] and the original proposal of Tsang et
al. in [6]. The two point sources in question in [38] originated in fact from the
same HeNe laser. The laser light was split by a polarising beam splitter, giving two
beams of orthogonal polarisation, which could then be recombined at a 50:50 beam
splitter. The two beams were separated spatially before this second beam splitter.
A configuration of two lenses, rather than an additional reflection in an arm of the
interferometer, performed the inversion, but this was seen to introduce additional
uncertainty in measurements due to the dispersive nature of the lenses.[38] Fur-
thermore, the estimator implemented in [38] was a function of the residual power

2Not affiliated with Tsang’s Quantum Measurement Group at the same institution.
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output of the interferometer rather than the photocount across all measurements.
For comparison, the estimator in [38] is

d̂ = σ

√
2 log

(
1

1−Ω

)
where Ω ≈ 1− exp

(
−d2

2σ2

)
.

(3.19)

Of these three differences (mutually incoherent sources that were not thermal,
utilising lenses rather than mirror geometry for the inversion, and a different
measured quantity used in estimation of the separation), the first is particularly
noted by the authors of [38]: completely incoherent sources would present an
additional challenge in construction of an image inversion interferometer, owing to
the far shorter coherence length of the light.



Chapter 4

Fabrication

In order to create two incoherent point sources, optical devices with pairs of small
apertures were fabricated. Each aperture then acted as a point source emitter
when illuminated from behind by an incoherent source. Each pair was to be
made up of two apertures of the same shape and size, ensuring that the point
sources were of equal strength. Pairs differed in the separation between individual
apertures, which is the primary independent parameter of interest to this project.
To demonstrate resolution of green sources separated by less than the diffraction
limit, the separations1 would have to be on the order of a couple of hundred
nanometers; hence, custom fabrication was required. This chapter documents the
fabrication process.

The apertures considered were pairs of pinholes and slits. For such small devices,
it would be far easier to align long rectangular slits than pinholes, and so the
fabrication of pairs of slits was prioritised over pinholes. Dimensions of 100µm by
1µm were decided upon for the slits, with separations ranging from 2µm to 5µm.
Smaller slits with separations as tiny as 100nm were also planned.

Figure 4.1: Schematic of optical device design showing pairs of slits and grating (white) in an
opaque material (blue).

The aim of the fabrication process was to produce macroscopic optical devices
1As in previous chapters, the separation is defined as the distance between the two midpoints of

the apertures.
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each with sets of microscopic slits of different separations. A grating, consisting
of slits spaced at progressively smaller intervals, was also included in the design
(Figure 4.1) to test the process for smaller separations. It was clear from the outset
that the main challenge would be obtaining the desired dimensions for the slits,
as fortunately rectangles are a simple shape. Several sequences of techniques
were discussed. An overview of the method described in this chapter is shown in
Figure 4.2. The end result was five devices made of titanium-coated glass, with
the slits etched into the titanium. Sub-micron separations were not achieved but a
discussion of suggested modifications to the process appears in the final section
(4.5) of this chapter. Here is a summary of the main steps of the fabrication process,
with relevant sections in parentheses:

1. The glass slide was coated with a thin layer of titanium using electron beam
evaporation (4.1);

2. A layer of electron beam resist was applied on top of the titanium (4.2);

3. Electron beam lithography drew the pattern of slits into the resist (4.2);

4. Development of the resist removed the areas drawn on by the electron beam
(4.2);

5. Inductively coupled plasma etching transferred the pattern into the titanium
(4.3);

6. The resist was removed and the fabrication was complete. (4.3)

Finally, scanning electron microscopy of the devices allowed the dimensions of the
slits to be measured. This is detailed in section 4.4.

4.1 Electron beam evaporation

Electron beam evaporation (e-beam evaporation) is a physical vapour deposition
(PVD) technique. Under high vacuum, a current is applied to a tungsten filament,
which gives off electrons. The electrons are then formed into a beam and steered
by a magnetic field towards a sample of the material that is to form the coating.
Attacked by the electron beam, the material vaporises. This vapour then precipitates
and coats everything in sight, including the substrate of interest, and a quartz
crystal monitor also located in the vacuum chamber.[39] The oscillation frequency
of the crystal changes with the thickness of the coating applied to it, and so can be
used in real time to measure indirectly the amount of material deposited on the
substrate.

We chose to investigate Ti and W as possible materials for the slits as these two
metals can be etched in fluorine-based plasmas. Glass slides underwent e-beam
evaporation PVD with either titanium or tungsten to a thickness of 50nm or 100nm.
These slides were then tested for opacity with 532nm laser light. Results are
displayed in Figure 4.3.
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The 100nm Ti coating was chosen as it offered superior opacity; however, the thicker
the coating, the more difficult it would be to etch.

4.2 Electron beam lithography

Electron beam lithography (EBL) is a process that uses an electron beam to draw
tiny patterns on a layer of resist, which changes its chemical composition upon
being exposed to the beam.[40] The e-beam resist may be positive (exposed areas
removed when developed) or negative (unexposed areas removed when developed).
Due to the small size of the slits compared to the surrounding area, a positive
resist was chosen: ZEP520 resist.[41] This resist offers high resolution and and
good resistance to plasma etching, which is discussed in the next section. The resist
was dropped onto the glass slide with the titanium side up. After spinning for

1) 4)

2) 5)

3) 6)

Figure 4.2: Schematic overview of fabrication process (microscope slide viewed side on): 1) one
side of a glass microscope slide (grey) was coated with titanium (blue), 2) the titanium
was topped with a layer of resist (red), 3) electron beam lithography (area targeted
by electron beam in orange), 4) the resist was developed, 5) the titanium was etched
using inductively coupled plasma etching, 6) the remaining resist was removed and the
sample was ready for use.

Material Thickness (nm) Light transmitted
W 50 4.41%
W 100 0.08%
Ti 50 1.79%
Ti 100 0.05%

Figure 4.3: Opacity of different coating options
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30 seconds at 3000rpm, the slide was then baked at 180◦C for three minutes. This
process of adding resist, spinning, and baking was repeated twice more until the
desired resist thickness of >1000nm was reached. The rectangular geometry of the
slide meant that the resist layer had uneven thickness after spinning, which gave
rainbow thin film interference patterns when the slide was viewed from above.

The pattern used for the EBL was five repeats of the scheme of apertures shown in
Figure 4.1. Each repetition of this pattern formed a column of five writing fields on
the slide.2 A gap of 5mm was left between writing fields in the same column. Each
column was separated from the next by at least 15mm. The electron energy used
was 20keV. After EBL, the slide was placed in ZEP developer,[41] which dissolved
the resist that had been exposed to the beam. The slide was then ready for dry
etching.

4.3 Inductively coupled plasma etching

Reactive ion etching (RIE) is a dry etching method that uses plasma ions to etch
materials. The chemical reactions between the many species of ions and radicals
in the plasma and the substrate create volatile compounds that fly away from the
surface of the substrate.[42] Inductively-coupled plasma (ICP) etching is a specific
type of RIE capable of etching very anisotropic patterns (patterns dominated by
deep trenches into substrate with narrow openings).[43] A diagram of an ICP
etching set-up is shown in Figure 4.4.

Figure 4.4: Inductively coupled plasma etching set-up showing coils in orange [44]

In an ICP etching system, a coil carrying a radio frequency current envelops the
chamber, creating a magnetic field. The wall of the chamber is a dielectric material,
often quartz, ensuring good coupling of the magnetic field to the inside of the
chamber.[42] By Faraday’s law, charged particles inside the reactor will experience

2A writing field is the maximum area the EBL can ‘draw’ on without moving the sample.
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an electric field. The resulting current nulls the magnetic field. ICP etching is a
low pressure (<10mTorr) process with particles mostly vertically incident on the
sample. Applying a bias voltage (DC or low frequency AC) to the sample table
increases the energy of ions in the plasma, which in turn increases the energy of
radicals bombarding the substrate and the rate of the etching process.[43] Plasma
density may be increased by adjusting parameters such as the ICP power and/or
the magnetic field with multipole magnets to further confine electrons.[42, 45]
The combination of high ICP power (high density), low pressure, and a moderate
radio frequency table bias ensures highly directional or anisotropic etching can
be achieved.[43] The formation of compounds on the surface of the substrate is
generally to be avoided as this is the opposite of etching, but controlled deposition
of polymers may enhance etching in the case of anisotropic patterns.[45] The sample
table is helium-cooled to slow the degradation of the resist, and also to minimise
sample damage by ion bombardment; however, longer etching times are always
accompanied by greater sample damage.

The aim of the process scientist is to find a combination of initial resist thickness,
chemistry, etch time, ICP power and table bias that maximises the selectivity and
anisotropy of the etch. The pattern used (Figure 4.1) is isotropic as far as RIE
is concerned, as its narrowest openings are 1µm wide with a depth of 100nm;
therefore, the focus was on selectivity. Selectivity refers to preferential etching of
one material over another – the resist should obviously resist the etch, while the
substrate material should be eaten away more quickly. At this point in time, there
is no way of predicting which process will succeed other than prior experience;
hence, extensive tests of ICP etching comparing the etch rate of various thicknesses
of ZEP resist with titanium were undertaken. ZEP resist-coated glass is clearly
distinguishable from plain glass by eye; similarly, ZEP resist-coated titanium can
be easily contrasted with titanium, due to the dramatic decrease in reflectivity
introduced by the ZEP resist.

Ellipsometry was used to determine quantitatively the amount of ZEP left on the
slides. This technique measures the change in amplitude and phase for p- and
s-components of polarisation after a reference beam is reflected off the surface.[46]
Various parameters can be estimated through modelling of the data, including the
thickness of thin films on the surface. The resist was considered to have successfully
‘resisted’ the etching process if there was >100nm of resist left on the surface after
etching. For two glass slides (one coated with 100nm of Ti, the other with three
layers of resist [total resist thickness >700nm]) the process found to completely
remove the Ti – while leaving sufficient resist – was:

• four etches of 100s duration, then one etch of 20s duration, separated by 30s
“rests” to allow cooling of the samples

• with 10 mTorr pressure,

• 400 W ICP power,

• 25 W radio frequency bias,
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• 183 V DC bias,

• and 40 sccm (standard cubic centimetres per minute) SF6.

The ICP system used was an Oxford Instruments Plasmalab 100. After EBL and
ICP etching, the final devices were cleaned by soaking in ZEP remover[41] followed
by a final O2 plasma clean in a barrel etcher. The devices were then cut to size and
identified with a label A - E.

4.4 Scanning electron microscopy

Scanning electron microscopy (SEM) uses a focused beam of electrons to scan a
sample. Electrons are produced by an electron gun with energies ranging from
hundreds to tens of thousand electron volts, then focused with magnetic lenses
and directed at the sample with scanning coils. The formation of an electron
beam for SEM is the same as with EBL, but SEM directs the beam in a raster scan
rather than a specific pattern. Those electrons that have interacted with the sample,
carry information that can be used to form an image. The two primary types of
electrons used to create images in SEM are the secondary electrons (SE) and the
backscattered electrons (BSE). The former electrons are produced through inelastic
scattering and are of low energy. This means only SEs near to the surface end
up at the SE detector, hence SEs are sensitive to edges, roughness and general
topography of the sample. As there are more secondary electrons escaping from
edges, edges appear brighter in an SE image. For an example, see Figure 4.5.
As the name suggests, the latter electrons are backscattered from the original
electron beam hitting the sample. These electrons have high energy, of the same
order as the original beam. The amount of backscattering depends on the average
atomic number of the material the electrons are interacting with, and so BSEs yield
information about the composition of the sample. The greater the atomic number,
the more backscattering, and the brighter the area will appear on an image. A BSE
image has less information about the surface of the sample than an SE image, for
the BSEs come from a greater variety of depths within interaction volume of the
sample owing to their higher energy.[47] An example of a BSE image is given in
Figure 4.6. This is the same field of view as in Figure 4.5.

The purpose of conducting SEM on the fabricated devices was to accurately measure
the dimensions of the slits etched. Whilst the slits have length as well as width
and separation, accurate measurements of only the last two parameters are of chief
interest to the project. The choice was made to use BSE images to measure the
width and the separation of the slits. Titanium, the material surrounding the slits,
is sufficiently different in average atomic number to the material of the slits, silica,
to provide adequate contrast in a BSE image. If the slits are positioned so that
they are vertical in the image, horizontal intensity profiles provide cross-sections,
enabling the distances between titanium boundaries to be measured.

Three devices were imaged in the SEM, and labelled samples A, B, and C. Pairs
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Figure 4.5: Secondary electron image of slits on sample B separated by ≈ 3µm

Figure 4.6: Backscattered electron image of slits on sample B separated by ≈ 3µm

of slits created using an EBL pattern describing a separation of 2µm were then
indexed with a 2, and so on for other separation values (‘A3’ denotes a pair of
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slits on device A that has separation ≈ 3µm). Between these samples there was
considerable variation in the appearance of the slits under the microscope even
if they had resulted from the same EBL pattern. Figure 4.7 shows some of this
variation for three pairs of slits, one from each of samples A, B, and C, but all with
the same separation according to the EBL pattern used.

Figure 4.7: Intensity profiles from SEM images of pairs of slits of the same separation but different
samples (A, B, and C). The EBL pattern was for a separation of 4µm.

Pairs of slits of different separations on device B are compared in Figure 4.8.
Clear steps in the separation can be seen from ≈ 2µm to ≈ 5µm, but there are
differences in the width of each slit between pairs of slits, and even within a
pair of slits. It should be noted that the intensity profiles presented in Figure
4.8 are a selection illustrating the presence of these differences, and many more
cross-sections from different locations were analysed for a given image in order
to measure the dimensions of the slits. Each cross-section featured here consists
of integrated intensity over a 3µm length of the slits. High resolution BSE images
that featured the greater part of an entire pair of slits were used for this purpose (a
couple of examples are seen in Figures 4.11, 4.12). For one particular pair of slits
(B5), three of the ten profiles, which were collected across much of the length of
the slits, are shown in Figure 4.9. Little variation in either separation or width of
the slits is seen. In general, the width of slits is regular along the length of a pair,
but irregularities were observed including ragged edges, partially-etched stripes
next to slits, and islands of titanium in the middle of slits. A combination of by-eye
qualitative inspection of BSE images and quantitative results of intensity profile
measurements were used to rank the samples in terms of average slit quality. Only
one pair of slits was written off, as it was badly damaged by a scratch invisible to
the naked eye.

The first step in measuring the width and separation of slits from a set of intensity
data was to find the average intensity for titanium ITi (high intensity) and exposed
glass Iglass(low intensity) areas. The edge of a slit could then be defined by an
intensity Iedge

Iedge = ITi − 0.85
(

ITi − Iglass
)

(4.1)
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Figure 4.8: Intensity profiles from SEM images of pairs of slits on sample B of different separations.
The EBL patterns were for separations of 2µm (orange), 3µm (red), 4µm (purple),
and 5µm (blue). Intensity profiles have been translated vertically to allow for easier
comparison of pairs of slits and do not necessarily reflect the true contrast attained.

Figure 4.9: Intensity profiles from a SEM image of a pair of slits on the same sample B. The EBL
pattern was for a separation of 5µm.

The position of an edge was interpolated from the intensity data. Labelling the left
and right edges of slits 1 and 2 by L1, R1, L2, and R2, the width of each slit w1, w2,
and the separation d are easily found:

w1 = R1 − L1

w2 = R2 − L2

d =

(
L2 + R2

2

)
−
(

L1 + R1

2

) (4.2)

For each pair of slits, this process was conducted ten times using ten intensity cross-
sections from different locations along the slits. The means of w1, w2, and d were
found and the uncertainty taken as the standard deviation. Device B was found to
have the most precise widths and separations overall, which was reinforced by the
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nice clean look of the slits in the SEM images. The results for device B are tabulated
in Figure 4.10.

Pair of slits Width slit 1 (µm) Width slit 2 (µm) Separation (µm)
B2 1.38±0.08 1.49±0.05 2.09±0.02
B3 1.45 ±0.02 1.74±0.09 3.2 ±0.2
B4 1.38±0.06 1.28±0.06 4.11 ±0.06
B5 1.36±0.09 1.42±0.06 5.14±0.09

Figure 4.10: Measurements of slit width and separation from device B

Figure 4.11: Backscattered electron image of slits on sample B with separation ≈ 2µm.

4.5 Discussion of fabrication

The choice of resist and fabrication process were dictated by the preliminary study
we conducted to determine the exact conditions that would lead to successful
fabrication. Optical lithography was considered in the early brainstorming stages
of discussion, but the desired slit dimensions are at the very limit of resolution for
this technique (1µm). Extensive testing of dry etching of Ti along with ZEP resist
established the required thickness for the resist ( 1µm) and the ICP etch conditions
(duration, RF and DC biases, ICP power).

The fabrication process chronicled above successfully resulted in the production
of five devices made of titanium and glass, each with four pairs of slits with
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Figure 4.12: Backscattered electron image of slits on sample B separated by ≈ 5µm

separations 2-5µm and one grating. The grating provided a test of the process for
smaller spacings of slits. The grating consisted of a sequence of slits repeated six
times, with a gap of 3µm between each repetition. The sequence was seven slits
of 1µm width and various separations of 3,2,1.9,1.8,1.7,1.6, and 1.5µm. Inspection
of the BSE image presented in Figure 4.13 and the associated intensity data, some
of which is shown in Figure 4.14, reveals that at best only the first two slits in
each sequence were etched with some accuracy. The remaining slits were etched
but the titanium material separating was also removed. Here we discuss possible
explanations for why this happened, and suggest future issues and modifications
of the process for smaller slits and separations.

While sufficient selectivity was achieved, superior selectivity would likely result
if there was a reduction in the thickness of the titanium to be etched. On the
other hand, decreasing the thickness of the resist will enable the etching of higher
resolution patterns. ICP etching can accomplish the transferral of EBL patterns
into substrate with dimensions of 20nm or less, but with just tens of nanometres of
resist. An alternative technology is to use an intermediate layer or mask between
the titanium and the resist. Possible materials that could be trialled include SiO and
TiO2.[48] The pattern would be etched first into the intermediate material, and then
in a second process, etched into the substrate. By suitably adjusting parameters of
the ICP system, selectivity would be optimised for each process, transferring finer
patterns into the substrate while only using one layer of ZEP resist.

A key consideration when performing EBL to imprint patterns of small scale is the
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proximity effect. As the electron beam is aimed at specific areas of resist, some
electrons will travel through the resist and interact directly with the substrate. If
backscattering occurs at the boundary between the substrate and the resist, electrons
may interact with areas of the resist that would otherwise remain unexposed.[49]
In the case of two slits with small separation, the much narrower strip of resist
between the slits would especially suffer this effect due to the material either side
being exposed. The significance of the proximity effect would be studied through
dose testing to find the optimal exposure time for each pixel of the pattern. In
addition to adjusting the exposure, further corrections may be made including
ghost background exposure, multiple layers of resist and pattern modification.[49]
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Figure 4.13: Backscattered electron image of grating
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Figure 4.14: Part of an intensity cross-section of the grating.



Chapter 5

The quest for image inversion
interferometry

Now we barely falter / Now the long drive has begun /
North to the ocean / Hotter than the sun /
Do you see what I see? Do you see what I see?
Do you see what I see? Do you see what I see?

Do You See What I See? Hunters & Collectors

Brandishing my newly fabricated microslits and steeling myself with knowledge of
quantum Fisher information, I quixotically entered the quantum optics laboratory,
determined to resolve things once and for all. However, we focused on the imaging
journey rather than the destination of super-resolution. In this chapter, practical
developments in the area of image-inversion interferometry are reported. We
move from using a coherent source to incoherent illumination, with tangible gains
in visibility being made. Basic image analysis is explored through Mathematica
software.

5.1 The image inversion interferometer

The optical set-up begins with the light sources used. The experiment is constructed
for easy switching between a coherent source (the laser), and an incoherent source
(the LED) of the same colour. This is enabled by the positioning of a flip mirror. The
intensity of each source can be adjusted: the LED has a knob for this purpose, while
the intensity of the laser transmitted through the polarising beam splitter (PBS)
depends on the angle of the λ/2 waveplate. The beam is then steered onto two
converging lenses. The first lens has a focal length of 75mm; the second lens has a
focal length of 50mm. The choice of focal lengths for the lenses and the distance
separating them (125mm) is such that the beam narrows to a waist between the
lenses, and emerges collimated. A collimated laser beam is essential for alignment

53
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of the image-inversion interferometer. The beam then encounters a 50-50 beam
splitter. The transmitted beam is inverted using two planar mirrors (all mirrors are
highly reflective for broadband 532nm).

The reflected beam is bounced between two mirrors on a translation stage and
a third mirror, the position of which is controlled by a piezoelectric device. The
piezoelectric mount is connected to a signal generator, which provides a 3V peak-
to-peak triangular wave at an adjustable frequency, via a high voltage amplifier.

The two beams are combined at a second 50-50 beam splitter and sent to a pho-
todetector or a charged coupled device (CCD) at each port. The photodetector was
used for initial alignment of the interferometer as it was easy to gain real-time
intensity data that varied with the scanning of the piezoelectric device. The visibil-
ity of the fringes could be gauged using an oscilloscope, and positions of various
optical devices optimised. Once the first stage of alignment of the interferometer
was complete, a pinhole of 10µm diameter was placed at the waist between the
collimating lenses, i.e. 75mm after the first lens, and 50mm before the second. The
pinhole was mounted on a 3D translation stage, offering precise positioning along
the beam, as well as in the horizontal and vertical directions. Each translation stage
was operated manually via turning a micrometer of 0.005µm precision for each
direction. The 3D translation stage was also used for positioning of the pairs of
slits.

Figure 5.1: Experimental set-up for image inversion interferometry. LED = light-emitting diode,
BS = beam splitter, PBS = polarising beam splitter, CCD = charged coupled device.

5.2 Interference with coherent light

The coherent light source used was a Nd:YAG laser (Innolight Mephisto) with a
frequency doubling crystal (Innolight Diablo) with maximum power 1W. For quality
alignment, a much lower power (2mW) was used to avoid saturating any detectors.



CHAPTER 5. THE QUEST FOR IMAGE INVERSION INTERFEROMETRY 55

The resulting continuous wave emission was at 532nm with a coherence length
of ≈ 300m (estimated from the known linewidth of the laser); hence, interference
with coherent light may be observed over a broad range of path length differences
between the arms of the interferometer. The fringes are far more sensitive to
the positioning of each beam into the final beam splitter. If the beams emerge
aligned in the near- and far-fields, then interference is seen. Both beam splitters
were checked for even transmission and reflection of 532nm light by placing a
power meter in each arm. With no pinhole, the maximum visibility was over 98%.
A combination of a photodetector, an oscilloscope edge triggered by the signal
generator sending the triangular wave to the piezoelectric device, and a 50Hz scan
on the piezoelectric device allowed monitoring of the temporal profile of the fringes.
The 50Hz frequency was high enough for the oscilloscope to be triggered constantly.
The peak-to-peak voltage across the piezoelectric device was adjusted so that the
fringes appeared as close to sinusoidally varying in time without clipping.

The 10µm pinhole acted as a spatial filter to ensure the resulting beam had a
Gaussian profile, while also reducing the power into the interferometer. Some
adjustment of the pinhole vertically or horizontally output higher TEM modes,
which were attractive to look at although not very applicable to the project. With
the pinhole in place, the output intensity was low enough to use CCDs for detection
without any filters. CCDs have the advantage of providing a spatial profile of
the output light. When well aligned, the fringes appeared as concentric rings,
with those at the centre appearing and disappearing with the scanning of the
piezoelectric device. A more sensitive photodetector and amplifier were also used
to observe fringes with the laser passing through the pinhole. Fine alignment
through the shape of the fringes could be confirmed by incremental increases in
the visibility calculated from the amplitude of the fringes on the oscilloscope. Raw
interference data collected from the CCD for one coherent point source (10µm
pinhole at the waist) and a 1Hz piezoelectric scanning frequency is plotted in Figure
5.2. With the CCD having a maximum frame rate of 15 frames per second, 1Hz
was about the fastest scanning frequency that resulted in interference being easily
observed in real time. No correction for any ambient light has been made, as the
alignment of the interferometer for the laser beam was simply intended to provide
a launchpad for subsequent alignment with incoherent light. Autocontrast on the
CCD was turned off. However, a discrete Fourier transform was performed on the
data to profile the frequency distribution of the interference. The first component of
the Fourier series for this data had a frequency of 1.02Hz, which can be attributed
confidently to the scanning of the mirror attached to the piezoelectric crystal. There
was evidence for other frequencies, but these components had lower amplitudes.
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Figure 5.2: Interference fringes obtained using a coherent source and the piezoelectric mirror
scanning frequency set to 1Hz. Intensity data from the CCD is shown in orange, while
the first Fourier series term is shown in blue (h= 1.02Hz).

5.3 Interference with incoherent light

Building an interferometer for use with incoherent light requires orders of mag-
nitude more refinement.1 The path lengths of the two arms must be identical if
interference is to occur, owing to the very short coherence length of the light. Given
the geometry of our interferometer deviated from a typical ‘square’ Mach-Zehnder
interferometer, this was especially challenging. The placement of optics on the
bench was revised so that every component stood on a gridline of the table, includ-
ing the mirrors constituting the inversion device (minor movements of these caused
clipping of the beam). The two mirrors on the one-dimensional translation stage
were realigned precisely so that a beam incident on the first mirror was parallel to
the beam reflecting off the second mirror. In this way, movement of the translation
stage across its maximum range of 2.5cm minimally affected subsequent alignment
of the interferometer.

As an intermediate step between laser and the LED, a sodium lamp was used.
The emission spectrum of sodium has an orange doublet: a pair at 588.9950nm
and 589.5924nm, with the line at 588.9950nm having twice the intensity of the
other.[50] The coherence length for the sodium lamp is approximately 0.6mm,
which is six (three) orders of magnitude smaller (larger) than that of the laser
(LED). Since the sodium lamp is very weak compared to the laser, no pinhole was
used, and the lamp positioned immediately prior to the first beam splitter. The
extremely low intensity of the sodium lamp motivated the paper-cardboard-stick-
tape construction of several ‘houses’, ‘tents’, and ‘tunnels’ for the optics to exclude

1During the course of this project, I rebuilt the interferometer at least half a dozen times over: to
make it smaller, to make it squarer, to make it darker, to make it cleaner...
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the majority of stray light in the dark laboratory. Of course, with all the optics on
the table being geared for green light, the visibility of any fringes was bound to be
limited. Nevertheless some fringes were observed. The interference from the single
sodium source formed a pattern of vertical fringes within a larger vertical strip (see
Figure 5.3). Varying the path length of the non-inverting arm of the interferometer
by more than 0.6mm caused the interference to be lost. The integrated intensity
across the CCD is plotted as a function of time in Figure 5.4. The visibility of the
raw data is 3.4%. A Fourier transform of the data returned the most prominent
five frequency components within the range 4.9 - 5.1Hz, which matches the strong
beating seen in Figure 5.4. The limitations of the sodium lamp as a source for this
experiment meant we did not look into this further.

a) b) c)

Figure 5.3: Sodium lamp fringes: a) example of a raw CCD image, b) minimum integrated
intensity (cropped, adjusted contrast), c) maximum integrated intensity (cropped,
adjusted contrast)

The LED obtained for this project was a SCOPELED G-series 250T tabletop mi-
croscope illuminator with a maximum radiant power of 2.350W and a coherence
length of 10µm (it changes colour perceptibly with power).2 The LED was always
tuned to the lowest power setting while switched on. The light from the LED was
steered with a series of mirrors so that it followed the same path as the laser beyond
the flipped mirror. The centre of the circular LED beam, which had a diameter of
≈0.5cm at the waist of the two lenses, was positioned at the pinhole. By slowly
moving the mirrors on the translation stage, and pausing often to observe the CCD
live video, faint fringes were seen just 0.04mm away from the calculated position
of the translation stage to equalise the path lengths. The interference was so slight

2532nm safety goggles were needed when the LED was uncovered and going at full pelt, and even
these only reduced its power by a fraction. The mean green LED developed quite a reputation. Don’t
mess with it.
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Figure 5.4: Interference fringes obtained using a sodium lamp source (piezoelectric scanning
frequency of 1Hz).

that distinguishing whether it was a pattern of rings or vertical strips was nigh
impossible by eye. Adjusting the translation stage by 4µm (a path length difference
of ≈ 8µm) was sufficient to ruin the interference. Examples of dark and light
fringes are depicted in Figure 5.5. Scanning the moving mirror at different fre-
quencies revealed that this positioning of the interferometer was likely outputting
a signal of inversion interference: the frequency of the fringes was proportional
to the frequency of the scan. The LED data, along with primary Fourier series
terms, are plotted in Figures 5.6, 5.7, and 5.8. Assuming the relationship between
the frequency of the scan f , and the main frequency of the interference h is of
the form h = κ f , then κ ≈ 0.253± 0.002. Many more measurements are required,
but this is the most promising signal found to date. Note that this is for one
incoherent source (the pinhole), not two: interference using the fabricated slits as
point sources has not yet been observed. Laser light incident upon device B has
yielded the relative positions of the pairs of slits B2-B5 in the (x, y, z) co-ordinates of
the three-dimensional translation stage. The iconic double slit interference patterns
are indeed distinctive and very localised features (see Appendix for pictures).

5.4 Image processing

In addition to honing our fringe-spotting skills in the laboratory, preliminary
investigations into image processing using CCD data have been conducted. Two
methods relatively easy to implement in Mathematica are cropping the images to
select the areas where interference is most noticeable, and increasing the contrast
of the images. The code used appears in the Appendix. The preliminary results of
applying these techniques to data collected for the sodium lamp and LED sources
are summarised in Figure 5.9. All of the Na lamp images were cropped to the same
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a) b)

Figure 5.5: LED fringes: a) minimum integrated intensity, b) maximum integrated intensity

Figure 5.6: Interference fringes obtained using an LED and the piezoelectric mirror scanning
frequency set to 100mHz. Intensity data from the CCD is shown in orange, while the
first Fourier series term is shown in blue (h= 0.393Hz).

range of pixels corresponding to a set of vertical strips (for examples of cropped
and contrast-boosted Na lamp images, see Figure 5.3). The images using LED
illumination were cropped to a different size to cover all visible ‘rings’ and the full
vertical extent of the CCD (for examples of cropped LED images, see Figure 5.5).
The reason for not reducing the size of the LED images in the vertical direction is
the uncertainty as to the presence of vertical, stripe-like interference.

The large increase in visibility after increasing the contrast is artificial, particularly
in the case of the LED: frames of minimum and maximum intensity are indistin-
guishable by eye, and comparison of the vertical scales in the plots of the “enhanced”
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Figure 5.7: Interference fringes obtained using an LED and the piezoelectric mirror scanning
frequency set to 200mHz. Intensity data from the CCD is shown in orange, while the
first Fourier series term is shown in blue (h= 0.797Hz). A low frequency Fourier term
(h = 0.038Hz) is also shown in purple; however, this time series is too short to measure
such low frequencies with any accuracy.

Figure 5.8: Interference fringes obtained using an LED and the piezoelectric mirror scanning
frequency set to 1Hz. Intensity data from the CCD is shown in orange, while the first
Fourier series term is shown in blue (h= 3.96Hz).

fringes (Figure 5.11) and the “cropped” fringes indicates that much information
has been potentially discarded. If we knew which frequencies we were looking for
in the data, then tailored contrast enhancement may be an option to extract a better
signal from the noise. At this stage we lack the a priori understanding to undertake
more complicated processing of image data. This is not conclusive analysis by
any means. In the results presented here, the background intensity and any noise
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Processing technique Na lamp V (%) LED V (%)
None 3.4 2.1

Cropped images 3.6 3.1
Cropping and contrast adjustment 14.9 76.4

Figure 5.9: Preliminary results showing enhancement of fringe visibility through processing image
data in Mathematica

arising from the CCD itself is completely ignored. Background measurements of
longer duration would provide data suitable for detecting low-frequency noise as
well as ascertaining the magnitude of the noise floor.

Figure 5.10: Interference fringes obtained using an LED (select area of CCD)

Figure 5.11: Post-processing enhanced interference fringes obtained using an LED



Chapter 6

Conclusions and future aims

Super-resolution through quantum estimation theory is an exciting area of research
that is fresh on the scene of quantum metrology. The super-resolution of incoherent
thermal sources has not yet been achieved using interferometry. This project took a
first step towards realising the construction of a SLIVER.

We now have incoherent point-like sources of light to which the SLIVER technique
can be applied. The creation of pairs of slits with dimensions in microns required
the perfection of a new recipe for the plasma etching of titanium-coated glass. The
development of this empirical process is a useful addition to the body of knowledge
in the field of micro- and nano-fabrication. When combined with a powerful LED,
the slits will enable a high-quality performance test of SLIVER, given that the
dimensions of the slits have been accurately measured through scanning electron
microscopy. Investigating alternative fabrication technologies may yield much
narrower slits with separations of tens of nanometres or enable the etching of finer
structures such as pinholes.

An image inversion interferometry is an instrument of relatively simple design
that has much potential to enhance imaging processes at optical wavelengths.
However, any path difference between the arms of the interferometer had to be
within 8µm for interference to be observed using green incoherent light. Building
an interferometer of this precision was an extended iterative process of alignment.
We found an interference signal for one incoherent source, which will be further
optimised in the near future. Additional measurements will no doubt ‘shed some
light’ on the presence of noise in the detectors, the background illumination, and
why the frequency of the signal for the incoherent light does not correspond to
the frequency of the scan across a small range of path lengths. A more thorough
characterisation of the interference will enable the development of appropriate
post-processing methods for the image data. A goal for the immediate future is to
utilise the fabricated slits with incoherent illumination, to analyse the output of
both ports, and to estimate the separation parameter using these measurements.

62
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The power of statistical quantities such as the Cramér-Rao lower bound to overturn
historical limits such as Abbe’s diffraction limit is being realised, with several
theoretical proposals appearing over the past year aiming to improve existing
techniques in imaging and fluorescence microscopy. As yet unpublished theory
now places a bound on the minimum Fisher information that may be obtained
through SLIVER for thermal sources of any power, broadening the potential reach
of the technique to astronomical interferometry. Specific extensions of the practical
SLIVER set-up include spatially-resolved detection and image inversion in higher
dimensions.

The race belongs not to the swift, but to those who keep on running.
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Appendix

Pretty modes through the pinhole!

Double slit interference!

More double slit interference!
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